ترغب بنشر مسار تعليمي؟ اضغط هنا

A spectroscopy approach to measure the gravitational mass of antihydrogen

95   0   0.0 ( 0 )
 نشر من قبل Alexei Voronin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a method to induce resonant transitions between antihydrogen ($bar{H}$) quantum states above a material surface in the gravitational field of the Earth. The method consists of applying a gradient of magnetic field, which is temporally oscillating with the frequency equal to a frequency of transition between gravitational states of antihydrogen. A corresponding resonant change in the spatial density of antihydrogen atoms could be measured as a function of the frequency of applied field. We estimate an accuracy of measuring antihydrogen gravitational states spacing and show how a value of the gravitational mass of the $bar{H}$ atom could be deduced from such a measurement. We also demonstrate that a method of induced transitions could be combined with a free-fall-time measurement in order to further improve the precision.



قيم البحث

اقرأ أيضاً

We study a method to induce resonant transitions between antihydrogen quantum states above a material surface in the gravitational field of the Earth. The method consists in applying a gradient of magnetic field which is temporally oscillating with t he frequency equal to a frequency of a transition between gravitational states of antihydrogen. Corresponding resonant change in a spatial density of antihydrogen atoms can be measured as a function of the frequency of applied field. We estimate an accuracy of measuring antihydrogen gravitational states spacing and show how a value of the gravitational mass of the antihydrogen atom can be deduced from such a measurement.
387 - C. Amsler , A. Ariga , T. Ariga 2012
We propose to build and operate a detector based on the emulsion film technology for the measurement of the gravitational acceleration on antimatter, to be performed by the AEgIS experiment (AD6) at CERN. The goal of AEgIS is to test the weak equival ence principle with a precision of 1% on the gravitational acceleration g by measuring the vertical position of the anni- hilation vertex of antihydrogen atoms after their free fall in a horizontal vacuum pipe. With the emulsion technology developed at the University of Bern we propose to improve the performance of AEgIS by exploiting the superior position resolution of emulsion films over other particle de- tectors. The idea is to use a new type of emulsion films, especially developed for applications in vacuum, to yield a spatial resolution of the order of one micron in the measurement of the sag of the antihydrogen atoms in the gravitational field. This is an order of magnitude better than what was planned in the original AEgIS proposal.
The ASACUSA collaboration at the Antiproton Decelerator of CERN aims at a precise measurement of the antihydrogen ground-state hyperfine structure as a test of the fundamental CPT symmetry. A beam of antihydrogen atoms is formed in a CUSP trap, under goes Rabi-type spectroscopy and is detected downstream in a dedicated antihydrogen detector. In parallel measurements using a polarized hydrogen beam are being performed to commission the spectroscopy apparatus and to perform measurements of parameters of the Standard Model Extension (SME). The current status of antihydrogen spectroscopy is reviewed and progress of ASACUSA is presented.
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison to hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSAs antihydrogen experiment. The measured value of $ u_mathrm{HF}$=$1~420~405~748.4(3.4)(1.6)~textrm{Hz}$ with a relative precision of $Delta$$ u_mathrm{HF}$/$ u_mathrm{HF}$=$2.7times10^{-9}$ constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the ppb level. Together with the recently presented observation of antihydrogen atoms $2.7~textrm{m}$ downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
The antihydrogen programme of the ASACUSA collaboration at the antiproton decelerator of CERN focuses on Rabi-type measurements of the ground-state hyperfine splitting of antihydrogen for a test of the combined Charge-Parity-Time symmetry. The spectr oscopy apparatus consists of a microwave cavity to drive hyperfine transitions and a superconducting sextupole magnet for quantum state analysis via Stern-Gerlach separation. However, the small production rates of antihydrogen forestall comprehensive performance studies on the spectroscopy apparatus. For this purpose a hydrogen source and detector have been developed which in conjunction with ASACUSAs hyperfine spectroscopy equipment form a complete Rabi experiment. We report on the formation of a cooled, polarized, and time modulated beam of atomic hydrogen and its detection using a quadrupole mass spectrometer and a lock-in amplification scheme. In addition key features of ASACUSAs hyperfine spectroscopy apparatus are discussed.t
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا