ترغب بنشر مسار تعليمي؟ اضغط هنا

Planck intermediate results. XVIII The millimetre and sub-millimetre emission from planetary nebulae

141   0   0.0 ( 0 )
 نشر من قبل Paolo Leto dr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Late stages of stellar evolution are characterized by copious mass-loss events whose signature is the formation of circumstellar envelopes (CSE). Planck multi-frequency measurements have provided relevant information on a sample of Galactic planetary nebulae (PNe) in the important and relatively unexplored observational band between 30 and 857GHz. Planck enables the assembly of comprehensive PNe spectral energy distributions (SEDs) from radio {bf to} far-infrared frequencies. Modelling of the derived SEDs provides us with information on physical properties of CSEs and the mass content of both main components: ionised gas, traced by the free-free emission at cm--mm waves; and thermal dust, traced by the millimetre and far-IR emission. In particular, the amount of ionised gas and dust has been derived here. Such quantities have also been estimated for the very young PN CRL618, where the strong variability observed in its radio and millimetre emission has previously prevented the construction of its SED. A morphological study of the Helix Nebula has also been performed. Planck maps reveal, for the first time, the spatial distribution of the dust inside the envelope, allowing us to identify different components, the most interesting of which is a very extended component (up to 1pc) that may be related to a region where the slow expanding envelope is interacting with the surrounding interstellar medium.



قيم البحث

اقرأ أيضاً

We use Planck HFI data combined with ancillary radio data to study the emissivity index of the interstellar dust emission in the frequency range 10 - 353 GHz, or 3 - 0.8 mm, in the Galactic plane. We analyse the region l=20 degr - 44 degr and |b| leq 4 degr where the free-free emission can be estimated from radio recombination line data. We fit the spectra at each sky pixel with a modified blackbody model and two spectral indices, beta_mm and beta_FIR, below and above 353 GHz respectively. We find that beta_mm is smaller than beta_FIR and we detect a correlation between this low frequency power-law index and the dust optical depth at 353 GHz, tau_353. The opacity spectral index beta_mm increases from about 1.54 in the more diffuse regions of the Galactic disk, |b| = 3 degr - 4 degr and tau_353 ~ 5 x 10^{-5}, to about 1.66 in the densest regions with an optical depth of more than one order of magnitude higher. We associate this correlation with an evolution of the dust emissivity related to the fraction of molecular gas along the line of sight. This translates into beta_mm ~ 1.54 for a medium that is mostly atomic and beta_mm ~ 1.66 when the medium is dominated by molecular gas. We find that both the Two-Level System model and the emission by ferromagnetic particles can explain the results. The results improve our understanding of the physics of interstellar dust and lead towards a complete model of the dust spectrum of the Milky Way from far-infrared to millimetre wavelengths.
156 - N. Seymour 2010
We examine the rest-frame far-infrared emission from powerful radio sources with 1.4GHz luminosity densities of 25<=log(L_1.4/WHz^-1)<=26.5 in the extragalactic Spitzer First Look Survey field. We combine Herschel/SPIRE flux densities with Spitzer/IR AC and MIPS infrared data to obtain total (8-1000um) infrared luminosities for these radio sources. We separate our sources into a moderate, 0.4<z<0.9, and a high, 1.2<z<3.0, redshift sub-sample and we use Spitzer observations of a z<0.1 3CRR sample as a local comparison. By comparison to numbers from the SKA Simulated Skies we find that our moderate redshift sample is complete and our high redshift sample is 14per cent complete. We constrain the ranges of mean star formation rates (SFRs) to be 3.4-4.2, 18-41 and 80-581Msun/yr for the local, moderate and high redshift samples respectively. Hence, we observe an increase in the mean SFR with increasing redshift which we can parameterise as ~(1+z)^Q, where Q=4.2+/-0.8. However we observe no trends of mean SFR with radio luminosity within the moderate or high redshift bins. We estimate that radio-loud AGN in the high redshift sample contribute 0.1-0.5per cent to the total SFR density at that epoch. Hence, if all luminous starbursts host radio-loud AGN we infer a radio-loud phase duty cycle of 0.001-0.005.
We model the sub-millimetre polarization patterns that are expected for filamentary clouds that are threaded by helical magnetic fields. We previously developed a three parameter model of such clouds (Fiege & Pudritz 2000a), which are described by a concentration parameter $C$, and two flux to mass ratios $Gz$ and $Gphi$ to specify the mass loading of the poloidal and toroidal field lines respectively. Our models provide a simple and purely geometric explanation for the well-known ``polarization hole effect, in which the sub-millimetre polarization percentage decreases toward the regions of peak intensity. This occurs because of a cancellation between contributions to the polarization from the ``backbone of poloidal flux along the filaments axis and its surrounding envelope, which is dominated by the toroidal field component. A systematic exploration of our parameter space allows us to classify the polarization patterns due to filaments aligned approximately perpendicular to the plane of the sky into three basic types. The polarization vectors are parallel to filaments when $ratioappleq 0.1$, where $Bzs$ and $Bphis$ are respectively the poloidal and toroidal magnetic field components at the outer surface of the filament. The polarization vectors are perpendicular to filaments when $ratioappgeq 0.33$. Intermediate cases result in polarization patterns that contain $90^circ$ flips in the orientation of the polarization vectors. The flips are symmetric about the central axis for filaments oriented parallel to the plane of the sky, but more complicated asymmetric patters result from filaments that are inclined at some angle.
92 - R. N. Ogley 2000
We present the first detections of the black hole X-ray binary GRS 1915+105 at sub-millimetre wavelengths. We clearly detect the source at 350 GHz on two epochs, with significant variability over the 24 hr between epochs. Quasi-simultaneous radio mon itoring indicates an approximately flat spectrum from 2 - 350 GHz, although there is marginal evidence for a minimum in the spectrum between 15 - 350 GHz. The flat spectrum and correlated variability imply that the sub-mm emission arises from the same synchrotron source as the radio emission. This source is likely to be a quasi-steady partially self-absorbed jet, in which case these sub-mm observations probe significantly closer to the base of the jet than do radio observations and may be used in future as a valuable diagnostic of the disc:jet connection in this source.
We used wide area surveys over 39 deg$^2$ by the HerMES collaboration, performed with the Herschel Observatory SPIRE multi-wavelength camera, to estimate the low-redshift, $0.02<z<0.5$, monochromatic luminosity functions (LFs) of galaxies at 250, 350 and 500$,mu$m. SPIRE flux densities were also combined with Spitzer photometry and multi-wavelength archival data to perform a complete SED fitting analysis of SPIRE detected sources to calculate precise k-corrections, as well as the bolometric infrared (8-1000$,mu$m) luminosity functions and their low-$z$ evolution from a combination of statistical estimators. Integration of the latter prompted us to also compute the local luminosity density (LLD) and the comoving star formation rate density (SFRD) for our sources, and to compare them with theoretical predictions of galaxy formation models. The luminosity functions show significant and rapid luminosity evolution already at low redshifts, $0.02<z<0.2$, with L$_{IR}^* propto (1+z)^{6.0pm0.4}$ and $Phi_{IR}^* propto (1+z)^{-2.1pm0.4}$, L$_{250}^* propto (1+z)^{5.3pm0.2}$ and $Phi_{250}^* propto (1+z)^{-0.6pm0.4}$ estimated using the IR bolometric and the 250$,mu$m LFs respectively. Converting our IR LD estimate into an SFRD assuming a standard Salpeter IMF and including the unobscured contribution based on the UV dust-uncorrected emission from local galaxies, we estimate a SFRD scaling of SFRD$_0+0.08 z$, where SFRD$_0simeq (1.9pm 0.03)times 10^{-2} [mathrm{M}_odot,mathrm{Mpc}^{-3}]$ is our total SFRD estimate at $zsim0.02$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا