ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Cluster Mass Reconstruction Project: I. Methods and first results on galaxy-based techniques

134   0   0.0 ( 0 )
 نشر من قبل Lyndsay Old
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is the first in a series in which we perform an extensive comparison of various galaxy-based cluster mass estimation techniques that utilise the positions, velocities and colours of galaxies. Our primary aim is to test the performance of these cluster mass estimation techniques on a diverse set of models that will increase in complexity. We begin by providing participating methods with data from a simple model that delivers idealised clusters, enabling us to quantify the underlying scatter intrinsic to these mass estimation techniques. The mock catalogue is based on a Halo Occupation Distribution (HOD) model that assumes spherical Navarro, Frenk and White (NFW) haloes truncated at R_200, with no substructure nor colour segregation, and with isotropic, isothermal Maxwellian velocities. We find that, above 10^14 M_solar, recovered cluster masses are correlated with the true underlying cluster mass with an intrinsic scatter of typically a factor of two. Below 10^14 M_solar, the scatter rises as the number of member galaxies drops and rapidly approaches an order of magnitude. We find that richness-based methods deliver the lowest scatter, but it is not clear whether such accuracy may simply be the result of using an over-simplistic model to populate the galaxies in their haloes. Even when given the true cluster membership, large scatter is observed for the majority non-richness-based approaches, suggesting that mass reconstruction with a low number of dynamical tracers is inherently problematic.

قيم البحث

اقرأ أيضاً

79 - L. Old , R. Wojtak , F. R. Pearce 2017
With the advent of wide-field cosmological surveys, we are approaching samples of hundreds of thousands of galaxy clusters. While such large numbers will help reduce statistical uncertainties, the control of systematics in cluster masses becomes ever more crucial. Here we examine the effects of an important source of systematic uncertainty in galaxy-based cluster mass estimation techniques: the presence of significant dynamical substructure. Dynamical substructure manifests as dynamically distinct subgroups in phase-space, indicating an unrelaxed state. This issue affects around a quarter of clusters in a generally selected sample. We employ a set of mock clusters whose masses have been measured homogeneously with commonly-used galaxy-based mass estimation techniques (kinematic, richness, caustic, radial methods). We use these to study how the relation between observationally estimated and true cluster mass depends on the presence of substructure, as identified by various popular diagnostics. We find that the scatter for an ensemble of clusters does not increase dramatically for clusters with dynamical substructure. However, we find a systematic bias for all methods, such that clusters with significant substructure have higher measured masses than their relaxed counterparts. This bias depends on cluster mass: the most massive clusters are largely unaffected by the presence of significant substructure, but masses are significantly overestimated for lower mass clusters, by $sim10%$ at $10^{14}$ and $geq20%$ for $leq10^{13.5}$. The use of cluster samples with different levels of substructure can, therefore, bias certain cosmological parameters up to a level comparable to the typical uncertainties in current cosmological studies.
75 - L. Old , R. Wojtak , G. A. Mamon 2015
This article is the second in a series in which we perform an extensive comparison of various galaxy-based cluster mass estimation techniques that utilise the positions, velocities and colours of galaxies. Our aim is to quantify the scatter, systemat ic bias and completeness of cluster masses derived from a diverse set of 25 galaxy-based methods using two contrasting mock galaxy catalogues based on a sophisticated halo occupation model and a semi-analytic model. Analysing 968 clusters, we find a wide range in the RMS errors in log M200c delivered by the different methods (0.18 to 1.08 dex, i.e., a factor of ~1.5 to 12), with abundance matching and richness methods providing the best results, irrespective of the input model assumptions. In addition, certain methods produce a significant number of catastrophic cases where the mass is under- or over-estimated by a factor greater than 10. Given the steeply falling high-mass end of the cluster mass function, we recommend that richness or abundance matching-based methods are used in conjunction with these methods as a sanity check for studies selecting high mass clusters. We see a stronger correlation of the recovered to input number of galaxies for both catalogues in comparison with the group/cluster mass, however, this does not guarantee that the correct member galaxies are being selected. We do not observe significantly higher scatter for either mock galaxy catalogues. Our results have implications for cosmological analyses that utilise the masses, richnesses, or abundances of clusters, which have different uncertainties when different methods are used.
We have used archival GMRT data to image and study 39 galaxy clusters. These observations were made as part of the GMRT Key Project on galaxy clusters between 2001 and 2004. The observations presented in this sample include 14 observations at 610 MHz , 29 at 325 MHz and 3 at 244 MHz covering a redshift range of 0.02 to 0.62. Multi-frequency observations were made for 8 clusters. We analysed the clusters using the SPAM processing software and detected the presence of radio halo emission for the first time in the clusters RXC J0510-0801 and RXC J2211.7-0349. We also confirmed the presence of extended emission in 11 clusters which were known from the literature. In clusters where halos were not detected upper limits were placed using our own semi-automated program. We plot our detections and non-detections on the empirical $L_X-P_{1.4}$ and $M_{500}-P_{1.4}$ relation in radio halo clusters and discuss the results. The best fits follow a power law of the form $L_{500} propto P_{1.4}^{1.82}$ and $M_{500} propto P_{1.4}^{3.001}$ which is in accordance with the best estimates in the literature.
Deep radio observations of galaxy clusters have revealed the existence of diffuse radio sources related to the presence of relativistic electrons and weak magnetic fields in the intracluster volume. The role played by this non-thermal intracluster co mponent on the thermodynamical evolution of galaxy clusters is debated, with important implications for cosmological and astrophysical studies of the largest gravitationally bound structures of the Universe. The low surface brightness and steep spectra of diffuse cluster radio sources make them more easily detectable at low-frequencies. LOFAR is the first instrument able to detect diffuse radio emission in hundreds of massive galaxy clusters up to their formation epoch. We present the first observations of clusters imaged by LOFAR and the huge perspectives opened by this instrument for non-thermal cluster studies.
As the largest, clearly defined building blocks of our Universe, galaxy clusters are interesting astrophysical laboratories and important probes for cosmology. X-ray surveys for galaxy clusters provide one of the best ways to characterise the populat ion of galaxy clusters. We provide a description of the construction of the NORAS II galaxy cluster survey based on X-ray data from the northern part of the ROSAT All-Sky Survey. NORAS II extends the NORAS survey down to a flux limit of 1.8 x 10^(-12) erg s^-1 cm^-2 (0.1 - 2.4 keV) increasing the sample size by about a factor of two. The NORAS II cluster survey now reaches the same quality and depth of its counterpart, the Southern REFLEX II survey, allowing us to combine the two complementary surveys. The paper provides information on the determination of the cluster X-ray parameters, the identification process of the X-ray sources, the statistics of the survey, and the construction of the survey selection function, which we provide in numerical format. Currently NORAS II contains 860 clusters with a median redshift of z = 0.102. We provide a number of statistical functions including the logN-logS and the X-ray luminosity function and compare these to the results from the complementary REFLEX II survey. Using the NORAS II sample to constrain the cosmological parameters, sigma_8 and Omega_m, yields results perfectly consistent with those of REFLEX II. Overall, the results show that the two hemisphere samples, NORAS II and REFLEX II, can be combined without problems to an all-sky sample, just excluding the Zone-of-Avoidance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا