ترغب بنشر مسار تعليمي؟ اضغط هنا

The ACS LCID project. X. The Star Formation History of IC 1613: Revisiting the Over-Cooling Problem

204   0   0.0 ( 0 )
 نشر من قبل Evan D. Skillman
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of the star formation history (SFH) of a field near the half light radius in the Local Group dwarf irregular galaxy IC 1613 based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. Our observations reach the oldest main sequence turn-off, allowing a time resolution at the oldest ages of ~1 Gyr. Our analysis shows that the SFH of the observed field in IC 1613 is consistent with being constant over the entire lifetime of the galaxy. These observations rule out an early dominant episode of star formation in IC 1613. We compare the SFH of IC 1613 with expectations from cosmological models. Since most of the mass is in place at early times for low mass halos, a naive expectation is that most of the star formation should have taken place at early times. Models in which star formation follows mass accretion result in too many stars formed early and gas mass fractions which are too low today (the over-cooling problem). The depth of the present photometry of IC 1613 shows that, at a resolution of ~1 Gyr, the star formation rate is consistent with being constant, at even the earliest times, which is difficult to achieve in models where star formation follows mass assembly.

قيم البحث

اقرأ أيضاً

Determining the star formation history (SFH) is key to understand the formation and evolution of dwarf galaxies. Recovering the SFH in resolved galaxies is mostly based on deep colour--magnitude diagrams (CMDs), which trace the signatures of multiple evolutionary stages of their stellar populations. In distant and unresolved galaxies, the integrated light of the galaxy can be decomposed, albeit made difficult by an age--metallicity degeneracy. Another solution to determine the SFH of resolved galaxies is based on evolved stars; these luminous stars are the most accessible tracers of the underlying stellar populations and can trace the entire SFH. Here we present a novel method based on long period variable (LPV) evolved asymptotic giant branch (AGB) stars and red supergiants (RSGs). We applied this method to reconstruct the SFH for IC 1613, an irregular dwarf galaxy at a distance of 750 kpc. Our results provide an independent confirmation that no major episode of star formation occurred in IC 1613 over the past 5 Gyr.
We present deep HST WFPC2 imaging of the Local Group dwarf irregular galaxy IC 1613. The photometry is the deepest to date for an isolated dwarf irregular galaxy. The resulting color-magnitude diagram (CMD) is analyzed using three different methods t o derive a star formation history (SFH). All three find an enhanced star formation rate (SFR), from 3 to 6 Gyr ago, and similar age-metallicity relationships (AMR). A comparison of the newly observed outer field with an earlier studied central field of IC 1613 shows that the SFR in the outer field has been significantly depressed during the last Gyr. This implies that the optical scale length of the galaxy has been decreasing with time and that comparison of galaxies at intermediate redshift with present day galaxies should take this effect into account. We find strong similarities between IC 1613 and the more distant Milky Way dSph companions in that all are dominated by star formation at intermediate ages. In particular, the SFH and AMR for IC 1613 and Leo I are indistinguishable. This implies that dIrr galaxies cannot be distinguished from dSphs by their intermediate age stellar populations. This type of a SFH may also be evidence for slower or suppressed early star formation in dwarf galaxies due to photoionization after the reionization of the universe by background radiation. Assuming that IC 1613 is typical of a dIrr evolving in isolation, since most of the star formation occurs at intermediate ages, these dwarf systems cannot be responsible for the fast chemical enrichment of the IGM which is seen at high redshift. There is no evidence for any large amplitude bursts of star formation in IC 1613, and we find it highly unlikely that analogs of IC 1613 have contributed to the excess of faint blue galaxies in existing galaxy redshift surveys.
We observed six fields of the Small Magellanic Cloud (SMC) with the Advanced Camera for Survey on board the Hubble Space Telescope in the F555W and F814W filters. These fields sample regions characterized by very different star and gas densities, and , possibly, by different evolutionary histories. We find that the SMC was already forming stars ~12 Gyr ago, even if the lack of a clear horizontal branch suggests that in the first few billion years the star formation activity was low. Within the uncertainties of our two-band photometry, we find evidence of a radial variation in chemical enrichment, with the SMC outskirts characterized by lower metallicity than the central zones. From our CMDs we also infer that the SMC formed stars over a long interval of time until ~2-3 Gyr ago. After a period of modest activity, star formation increased again in the recent past, especially in the bar and the wing of the SMC, where we see an enhancement in the star-formation activity starting from ~500 Myr ago. The inhomogeneous distribution of stars younger than ~100 Myr indicates that recent star formation has mainly developed locally.
159 - O. Pfuhl , T. K. Fritz , M. Zilka 2011
We present spatially resolved imaging and integral field spectroscopy data for 450 cool giant stars within 1,pc from Sgr,A*. We use the prominent CO bandheads to derive effective temperatures of individual giants. Additionally we present the deepest spectroscopic observation of the Galactic Center so far, probing the number of B9/A0 main sequence stars ($2.2-2.8,M_odot$) in two deep fields. From spectro-photometry we construct a Hertzsprung-Russell diagram of the red giant population and fit the observed diagram with model populations to derive the star formation history of the nuclear cluster. We find that (1) the average nuclear star-formation rate dropped from an initial maximum $sim10$,Gyrs ago to a deep minimum 1-2,Gyrs ago and increased again during the last few hundred Myrs, and (2) that roughly 80% of the stellar mass formed more than 5,Gyrs ago; (3) mass estimates within $rm Rsim1,pc$ from Sgr,A* favor a dominant star formation mode with a normal Chabrier/Kroupa initial mass function for the majority of the past star formation in the Galactic Center. The bulk stellar mass seems to have formed under conditions significantly different from the young stellar disks, perhaps because at the time of the formation of the nuclear cluster the massive black hole and its sphere of influence was much smaller than today.
75 - Matt J. Jarvis 2014
Radio wavelengths offer the unique possibility of tracing the total star-formation rate in galaxies, both obscured and unobscured. As such, they may provide the most robust measurement of the star-formation history of the Universe. In this chapter we highlight the constraints that the SKA can place on the evolution of the star-formation history of the Universe, the survey area required to overcome sample variance, the spatial resolution requirements, along with the multi-wavelength ancillary data that will play a major role in maximising the scientific promise of the SKA. The required combination of depth and resolution means that a survey to trace the star formation in the Universe should be carried out with a facility that has a resolution of at least ~0.5arcsec, with high sensitivity at < 1 GHz. We also suggest a strategy that will enable new parameter space to be explored as the SKA expands over the coming decade.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا