ﻻ يوجد ملخص باللغة العربية
We specify a result of Yokoi cite{yo} by proving that if $G$ is an abelian group and $X$ is a homogeneous metric $ANR$ compactum with $dim_GX=n$ and $check{H}^n(X;G) eq 0$, then $X$ is an $(n,G)$-bubble. This implies that any such space $X$ has the following properties: $check{H}^{n-1}(A;G) eq 0$ for every closed separator $A$ of $X$, and $X$ is an Alexandroff manifold with respect to the class $D^{n-2}_G$ of all spaces of dimension $dim_Gleq n-2$. We also prove that if $X$ is a homogeneous metric continuum with $check{H}^n(X;G) eq 0$, then $check{H}^{n-1}(C;G) eq 0$ for any partition $C$ of $X$ such that $dim_GCleq n-1$. The last provides a partial answer to a question of Kallipoliti and Papasoglu cite{kp}.
We prove a homological characterization of $Q$-manifolds bundles over $C$-spaces. This provides a partial answer to Question QM22 from cite{w}.
We provide some properties and characterizations of homologically $UV^n$-maps and $lc^n_G$-spaces. We show that there is a parallel between recently introduced by Cauty algebraic $ANR$s and homologically $lc^n_G$-metric spaces, and this parallel is s
For a non-compact n-manifold M let H(M) denote the group of homeomorphisms of M endowed with the Whitney topology and H_c(M) the subgroup of H(M) consisting of homeomorphisms with compact support. It is shown that the group H_c(M) is locally contract
We investigate the classical Alexandroff-Borsuk problem in the category of non-triangulable manifolds: Given an $n$-dimensional compact non-triangulable manifold $M^n$ and $varepsilon > 0$, does there exist an $varepsilon$-map of $M^n$ onto an $n$-di
The main results of this paper are: (1) If a space $X$ can be embedded as a cellular subspace of $mathbb{R}^n$ then $X$ admits arbitrary fine open coverings whose nerves are homeomorphic to the $n$-dimensional cube $mathbb{D}^n$; (2) Every $n$-dimens