ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex trend of magnetic order in Fe clusters on 4$d$ transition-metal surfaces

102   0   0.0 ( 0 )
 نشر من قبل Jan Honolka
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the occurrence of compensated spin configurations in Fe clusters and monolayers on Ru(0001) and Rh(111) by a combination of X-ray magnetic circular dichroism experiments and first-principles calculations. Our results reveal complex intra-cluster exchange interactions which depend strongly on the substrate 4$d$-band filling, the cluster geometry as well as lateral and vertical structural relaxations. The importance of substrate 4$d$-band filling manifests itself also in small nearest-neighbor exchange interactions in Fe dimers and in an nearly inverted trend of the Ruderman-Kittel-Kasuya-Yosida coupling constants for Fe adatoms on the Ru and Rh surface.

قيم البحث

اقرأ أيضاً

We present a detailed first principles study on the magnetic structure of an Fe monolayer on different surfaces of 5d transition metals. We use the spin-cluster expansion technique to obtain parameters of a spin model, and predict the possible magnet ic ground state of the studied systems by employing the mean field approach and in certain cases by spin dynamics calculations. We point out that the number of shells considered for the isotropic exchange interactions plays a crucial role in the determination of the magnetic ground state. In the case of Ta substrate we demonstrate that the out-of-plane relaxation of the Fe monolayer causes a transition from ferromagnetic to antiferromagnetic ground state. We examine the relative magnitude of nearest neighbour Dzyaloshinskii-Moriya (D) and isotropic (J) exchange interactions in order to get insight into the nature of magnetic pattern formations. For the Fe/Os(0001) system we calculate a very large D/J ratio, correspondingly, a spin spiral ground state. We find that, mainly through the leading isotropic exchange and Dzyaloshinskii-Moriya interactions, the inward layer relaxation substantially influences the magnetic ordering of the Fe monolayer. For the Fe/Re(0001) system characterized by large antiferromagnetic interactions we also determine the chirality of the $120^{circ}$ Neel-type ground state.
Using first-principles calculations, we demonstrate that an Fe monolayer can assume very different magnetic phases on hexagonal hcp (0001) and fcc (111) surfaces of 4d- and 5d-transition metals. Due to the substrates d-band filling, the nearest-neigh bor exchange coupling of Fe changes gradually from antiferromagnetic (AFM) for Fe films on Tc, Re, Ru and Os to ferromagnetic on Rh, Ir, Pd, and Pt. In combination with the topological frustration on the triangular lattice of these surfaces the AFM coupling results in a 120-degree Neel structure for Fe on Re and Ru and an unexpected double-row-wise AFM structure on Rh, which is a superposition of a left- and right-rotating 90-degree spin spiral.
We present results of density-functional calculations on the magnetic properties of Cr, Mn, Fe and Co nano-clusters (1 to 9 atoms large) supported on Cu(001) and Cu(111). The inter-atomic exchange coupling is found to depend on competing mechanisms, namely ferromagnetic double exchange and antiferromagnetic kinetic exchange. Hybridization-induced broadening of the resonances is shown to be important for the coupling strength. The cluster shape is found to weaken the coupling via a mechanism that comprises the different orientation of the atomic d-orbitals and the strength of nearest-neighbour hopping. Especially in Fe clusters, a correlation of binding energy and exchange coupling is also revealed.
The magnetic properties of materials based on two-dimensional transition-metal dichalcogenides (TMDC) have been investigated by means of first-principles DFT calculations, namely Fe-intercalated bulk Fe$_{1/4}$TaS$_2$ compounds as well as TMDC monola yers with deposited Fe films. Changing the structure and the composition of systems consisting of Fe overlayers on top of a TMDC monolayers resulted in considerable variations of their physical properties. For the considered systems the Dzyaloshinskii-Moriya (DM) interaction has been determined and used for the subsequent investigation of their magnetic structure using Monte Carlo simulations. Rather strong DM interactions as well as large $D/J$ ratios have been obtained in some of these materials, which can lead to the formation of skyrmionic structures varying with the strength of the applied external magnetic field.
The discovery of intrinsic magnetic topological order in $rm MnBi_2Te_4$ has invigorated the search for materials with coexisting magnetic and topological phases. These multi-order quantum materials are expected to exhibit new topological phases that can be tuned with magnetic fields, but the search for such materials is stymied by difficulties in predicting magnetic structure and stability. Here, we compute over 27,000 unique magnetic orderings for over 3,000 transition metal oxides in the Materials Project database to determine their magnetic ground states and estimate their effective exchange parameters and critical temperatures. We perform a high-throughput band topology analysis of centrosymmetric magnetic materials, calculate topological invariants, and identify 18 new candidate ferromagnetic topological semimetals, axion insulators, and antiferromagnetic topological insulators. To accelerate future efforts, machine learning classifiers are trained to predict both magnetic ground states and magnetic topological order without requiring first-principles calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا