ترغب بنشر مسار تعليمي؟ اضغط هنا

MIMO Zero-Forcing Performance Evaluation Using the Holonomic Gradient Method

118   0   0.0 ( 0 )
 نشر من قبل Constantin Siriteanu
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For multiple-input multiple-output (MIMO) spatial-multiplexing transmission, zero-forcing detection (ZF) is appealing because of its low complexity. Our recent MIMO ZF performance analysis for Rician--Rayleigh fading, which is relevant in heterogeneous networks, has yielded for the ZF outage probability and ergodic capacity infinite-series expressions. Because they arose from expanding the confluent hypergeometric function $ {_1! F_1} (cdot, cdot, sigma) $ around 0, they do not converge numerically at realistically-high Rician $ K $-factor values. Therefore, herein, we seek to take advantage of the fact that $ {_1! F_1} (cdot, cdot, sigma) $ satisfies a differential equation, i.e., it is a textit{holonomic} function. Holonomic functions can be computed by the textit{holonomic gradient method} (HGM), i.e., by numerically solving the satisfied differential equation. Thus, we first reveal that the moment generating function (m.g.f.) and probability density function (p.d.f.) of the ZF signal-to-noise ratio (SNR) are holonomic. Then, from the differential equation for $ {_1! F_1} (cdot, cdot, sigma) $, we deduce those satisfied by the SNR m.g.f. and p.d.f., and demonstrate that the HGM helps compute the p.d.f. accurately at practically-relevant values of $ K $. Finally, numerical integration of the SNR p.d.f. produced by HGM yields accurate ZF outage probability and ergodic capacity results.



قيم البحث

اقرأ أيضاً

289 - Sung Sik Nam , Duckdong Hwang , 2017
In this paper, we deal with the performance analysis of full-duplex relaying in decode-&-forward cooperative networks with multiple-antenna terminals. More specifically, by analyzing the end-to-end statistics, we derive the accurate closed-form expre ssions of the end-to-end outage probability for both transmit and receive ZFBF scheme over Rayleigh fading environments. Some selected results show some interesting observations useful for system designers. Specifically, we observe that the outage performance can be improved by adopting the joint ZF-based precoding with different antenna configurations.
We analyze the performance of multiple input/multiple output (MIMO) communications systems employing spatial multiplexing and zero-forcing detection (ZF). The distribution of the ZF signal-to-noise ratio (SNR) is characterized when either the intende d stream or interfering streams experience Rician fading, and when the fading may be correlated on the transmit side. Previously, exact ZF analysis based on a well-known SNR expression has been hindered by the noncentrality of the Wishart distribution involved. In addition, approximation with a central-Wishart distribution has not proved consistently accurate. In contrast, the following exact ZF study proceeds from a lesser-known SNR expression that separates the intended and interfering channel-gain vectors. By first conditioning on, and then averaging over the interference, the ZF SNR distribution for Rician-Rayleigh fading is shown to be an infinite linear combination of gamma distributions. On the other hand, for Rayleigh-Rician fading, the ZF SNR is shown to be gamma-distributed. Based on the SNR distribution, we derive new series expressions for the ZF average error probability, outage probability, and ergodic capacity. Numerical results confirm the accuracy of our new expressions, and reveal effects of interference and channel statistics on performance.
For multiple-input/multiple-output (MIMO) spatial multiplexing with zero-forcing detection (ZF), signal-to-noise ratio (SNR) analysis for Rician fading involves the cumbersome noncentral-Wishart distribution (NCWD) of the transmit sample-correlation (Gramian) matrix. An textsl{approximation} with a textsl{virtual} CWD previously yielded for the ZF SNR an approximate (virtual) Gamma distribution. However, analytical conditions qualifying the accuracy of the SNR-distribution approximation were unknown. Therefore, we have been attempting to exactly characterize ZF SNR for Rician fading. Our previous attempts succeeded only for the sole Rician-fading stream under Rician--Rayleigh fading, by writing it as scalar Schur complement (SC) in the Gramian. Herein, we pursue a more general, matrix-SC-based analysis to characterize SNRs when several streams may undergo Rician fading. On one hand, for full-Rician fading, the SC distribution is found to be exactly a CWD if and only if a channel-mean--correlation textsl{condition} holds. Interestingly, this CWD then coincides with the textsl{virtual} CWD ensuing from the textsl{approximation}. Thus, under the textsl{condition}, the actual and virtual SNR-distributions coincide. On the other hand, for Rician--Rayleigh fading, the matrix-SC distribution is characterized in terms of determinant of matrix with elementary-function entries, which also yields a new characterization of the ZF SNR. Average error probability results validate our analysis vs.~simulation.
Integer-forcing (IF) precoding, also known as downlink IF, is a promising new approach for communication over multiple-input multiple-output (MIMO) broadcast channels. Inspired by the integer-forcing linear receiver for multiple-access channels, it g eneralizes linear precoding by inducing an effective channel matrix that is approximately integer, rather than approximately identity. Combined with lattice encoding and a pre-inversion of the channel matrix at the transmitter, the scheme has the potential to outperform any linear precoding scheme, despite enjoying similar low complexity. In this paper, a specific IF precoding scheme, called diagonally-scaled exact IF (DIF), is proposed and shown to achieve maximum spatial multiplexing gain. For the special case of two receivers, in the high SNR regime, an optimal choice of parameters is derived analytically, leading to an almost closed-form expression for the achievable sum rate. In particular, it is shown that the gap to the sum capacity is upper bounded by 0.27 bits for any channel realization. For general SNR, a regularized version of DIF (RDIF) is proposed. Numerical results for two receivers under Rayleigh fading show that RDIF can achieve performance superior to optimal linear precoding and very close to the sum capacity.
157 - Amin Sakzad , J. Harshan , 2012
A new architecture called integer-forcing (IF) linear receiver has been recently proposed for multiple-input multiple-output (MIMO) fading channels, wherein an appropriate integer linear combination of the received symbols has to be computed as a par t of the decoding process. In this paper, we propose a method based on Hermite-Korkine-Zolotareff (HKZ) and Minkowski lattice basis reduction algorithms to obtain the integer coefficients for the IF receiver. We show that the proposed method provides a lower bound on the ergodic rate, and achieves the full receive diversity. Suitability of complex Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm (CLLL) to solve the problem is also investigated. Furthermore, we establish the connection between the proposed IF linear receivers and lattice reduction-aided MIMO detectors (with equivalent complexity), and point out the advantages of the former class of receivers over the latter. For the $2 times 2$ and $4times 4$ MIMO channels, we compare the coded-block error rate and bit error rate of the proposed approach with that of other linear receivers. Simulation results show that the proposed approach outperforms the zero-forcing (ZF) receiver, minimum mean square error (MMSE) receiver, and the lattice reduction-aided MIMO detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا