ترغب بنشر مسار تعليمي؟ اضغط هنا

Modular Entanglement of Atomic Qubits using both Photons and Phonons

159   0   0.0 ( 0 )
 نشر من قبل David Hucul
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum entanglement is the central resource behind applications in quantum information science, from quantum computers and simulators of complex quantum systems to metrology and secure communication. All of these applications require the quantum control of large networks of quantum bits (qubits) to realize gains and speedups over conventional devices. However, propagating quantum entanglement generally becomes difficult or impossible as the system grows in size, owing to the inevitable decoherence from the complexity of connections between the qubits and increased couplings to the environment. Here, we demonstrate the first step in a modular approach to scaling entanglement by utilizing a hierarchy of quantum buses on a collection of three atomic ion qubits stored in two remote ion trap modules. Entanglement within a module is achieved with deterministic near-field interactions through phonons, and remote entanglement between modules is achieved through a probabilistic interaction through photons. This minimal system allows us to address generic issues in synchronization and scalability of entanglement with multiple buses, while pointing the way toward a modular large-scale quantum computer architecture that promises less spectral crowding and less decoherence. We generate this modular entanglement faster than the observed qubit decoherence rate, thus the system can be scaled to much larger dimensions by adding more modules.

قيم البحث

اقرأ أيضاً

We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states o f trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can be extended to the high field regime where operations can be performed faster than the trap frequency. This general approach can be applied to more complex quantum systems, such as large collections of interacting atoms or molecules.
Cold atomic ensembles can mediate the generation of entanglement between pairs of photons. Photons with specific directions of propagation are detected, and the entanglement can reside in any of the degrees of freedom that describe the whole quantum state of the photons: polarization, spatial shape or frequency. We show that the direction of propagation of the generated photons determines the spatial quantum state of the photons and therefore, the amount of entanglement generated. When photons generated in different directions are combined, this spatial distinguishing information can degrade the quantum purity of the polarization or frequency entanglement.
189 - Y. P. Huang , M. G. Moore 2008
The problem of on-demand generation of entanglement between single-atom qubits via a common photonic channel is examined within the framework of optical interferometry. As expected, for a Mach-Zehnder interferometer with coherent laser beam as input, a high-finesse optical cavity is required to overcome sensitivity to spontaneous emission. We show, however, that with a twin-Fock input, useful entanglement can in principle be created without cavity-enhancement. Both approaches require single-photon resolving detectors, and best results would be obtained by combining both cavity-feedback and twin-Fock inputs. Such an approach may allow a fidelity of $.99$ using a two-photon input and currently available mirror and detector technology. In addition, we study interferometers based on NOON states and show that they perform similarly to the twin-Fock states, yet without the need for high-precision photo-detectors. The present interferometrical approach can serve as a universal, scalable circuit element for quantum information processing, from which fast quantum gates, deterministic teleportation, entanglement swapping $etc.$, can be realized with the aid of single-qubit operations.
We propose an efficient light-matter interface at optical frequencies between a single photon and a superconducting qubit. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide an d electrically coupled to a superconducting qubit placed near the outside surface of the waveguide. We show that high fidelity, photon-mediated, entanglement between distant superconducting qubits can be achieved with incident pulses at the single photon level. Such a low light level is highly desirable for achieving a coherent optical interface with superconducting qubit, since it minimizes decoherence arising from the absorption of light.
We investigate a non-adiabatic holonomic operation that enables us to entangle two fixed-frequency superconducting transmon qubits attached to a common bus resonator. Two coherent microwave tones are applied simultaneously to the two qubits and drive transitions between the first excited resonator state and the second excited state of each qubit. The cyclic evolution within this effective 3-level $Lambda$-system gives rise to a holonomic operation entangling the two qubits. Two-qubit states with 95% fidelity, limited mainly by charge-noise of the current device, are created within $213~rm{ns}$. This scheme is a step toward implementing a SWAP-type gate directly in an all-microwave controlled hardware platform. By extending the available set of two-qubit operations in the fixed-frequency qubit architecture, the proposed scheme may find applications in near-term quantum applications using variational algorithms to efficiently create problem-specific trial states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا