ﻻ يوجد ملخص باللغة العربية
The emergence of optical interferometers with three and more telescopes allows image reconstruction of astronomical objects at the milliarcsecond scale. However, some objects contain components with very different spectral energy distributions (SED; i.e. different temperatures), which produces strong chromatic effects on the interferograms that have to be managed with care by image reconstruction algorithms. For example, the gray approximation for the image reconstruction process results in a degraded image if the total (u, v)-coverage given by the spectral supersynthesis is used. The relative flux contribution of the central object and an extended structure changes with wavelength for different temperatures. For young stellar objects, the known characteristics of the central object (i.e., stellar SED), or even the fit of the spectral index and the relative flux ratio, can be used to model the central star while reconstructing the image of the extended structure separately. Methods. We present a new method, called SPARCO (semi-parametric algorithm for the image reconstruction of chromatic objects), which describes the spectral characteristics of both the central object and the extended structure to consider them properly when reconstructing the image of the surrounding environment. We adapted two image-reconstruction codes (Macim, Squeeze, and MiRA) to implement this new prescription. SPARCO is applied using Macim, Squeeze and MiRA on a young stellar object model and also on literature data on HR5999 in the near-infrared with the VLTI. This method paves the way to improved aperture-synthesis imaging of several young stellar objects with existing datasets. More generally, the approach can be used on astrophysical sources with similar features such as active galactic nuclei, planetary nebulae, and asymptotic giant branch stars.
This paper introduces a semi-parametric approach to image inpainting for irregular holes. The nonparametric part consists of an external image database. During test time database is used to retrieve a supplementary image, similar to the input masked
The High Energy Stereoscopic System (H.E.S.S.) is an array of five Imaging Atmospheric Cherenkov Telescopes (IACTs) designed to detect cosmogenic gamma-rays with very high energies. Originally consisting of just four identical IACTs (CT1-4) with an e
Mortality is different across countries, states and regions. Several empirical research works however reveal that mortality trends exhibit a common pattern and show similar structures across populations. The key element in analyzing mortality rate is
We outline an approach yielding proper motions with higher precision than exists in present catalogs for a sample of stars in the Kepler field. To increase proper motion precision we combine first moment centroids of Kepler pixel data from a single S
Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital phased array interferometer with multiple antennas distributed in Europe. It provides discrete sets of Fourier components of the sky brightness. Recovering the original brigh