ترغب بنشر مسار تعليمي؟ اضغط هنا

Strangeness in Quark Matter 2013: Opening Talk

254   0   0.0 ( 0 )
 نشر من قبل Jan Steinheimer
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss several new developments in the field of strange and heavy flavor physics in high energy heavy ion collisions. As shown by many recent theoretical works, heavy flavored particles give us a unique opportunity to study the properties of systems created in these collisions. Two in particular important aspects, the production of (multi) strange hypernuclei and the properties of heavy flavor mesons, are at the core of several future facilities and will be discussed in detail.



قيم البحث

اقرأ أيضاً

118 - Carsten Greiner 2001
This talk is devoted to review the field of strangeness production in (ultra-)relativistic heavy ion collisions within our present theoretical understanding. Historically there have been (at least) three major ideas for the interest in the production of strange hadronic particles: (1) mass modification of the kaons in a (baryon-)dense environment; (2) (early) K+ - production probes the nuclear equation of state (EoS); (3) enhanced strangeness production especially in the (multi-)strange (anti-)baryon channels as a signal of quark gluon plasma (QGP) formation. As a guideline for the discussion I employ the extensive experience with microscopic hadronic transport models. In addition, I elaborate on the recent idea of antihyperon production solely by means of multi-mesonic fusion-type reactions.
Kaon production in pion-nucleon collisions in nuclear matter is studied in the resonance model. To evaluate the in-medium modification of the reaction amplitude as a function of the baryonic density we introduce relativistic, mean-field potentials fo r the initial, final and intermediate mesonic and baryonic states. These vector and scalar potentials were calculated using the quark-meson coupling (QMC) model. The in-medium kaon production cross sections in pion-nucleon interactions for reaction channels with $Lambda$ and $Sigma$ hyperons in the final state were calculated at the baryonic densities appropriate to relativistic heavy ion collisions. Contrary to earlier work which has not allowed for the change of the cross section in medium, we find that the data for kaon production are consistent with a repulsive $K^+$-nucleus potential.
127 - Berndt Muller 2011
I review some aspects of the role of strange quarks in hot QCD matter and as probes of quark deconfinement at high temperature.
87 - V. Koch , A. Majumder , 2005
The correlation between baryon number and strangeness elucidates the nature of strongly interacting matter, such as that formed transiently in high-energy nuclear collisions. This diagnostic can be extracted theoretically from lattice QCD calculation s and experimentally from event-by-event fluctuations. The analysis of present lattice results above the critical temperature severely limits the presence of q-qbar bound states, thus supporting a picture of independent (quasi)quarks.
373 - G.Y.Shao , M.Di Toro , B.Liu 2011
The two-Equation of State (EoS) model is used to describe the hadron-quark phase transition in asymmetric matter formed at high density in heavy-ion collisions. For the quark phase, the three-flavor Nambu--Jona-Lasinio (NJL) effective theory is used to investigate the influence of dynamical quark mass effects on the phase transition. At variance to the MIT-Bag results, with fixed current quark masses, the main important effect of the chiral dynamics is the appearance of an End-Point for the coexistence zone. We show that a first order hadron-quark phase transition may take place in the region T=(50-80)MeV and rho_B=(2-4)rho_0, which is possible to be probed in the new planned facilities, such as FAIR at GSI-Darmstadt and NICA at JINR-Dubna. From isospin properties of the mixed phase somepossible signals are suggested. The importance of chiral symmetry and dynamical quark mass on the hadron-quark phase transition is stressed. The difficulty of an exact location of Critical-End-Point comes from its appearance in a region of competition between chiral symmetry breaking and confinement, where our knowledge of effective QCD theories is still rather uncertain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا