ﻻ يوجد ملخص باللغة العربية
We investigate which pure states of $n$ photons in $d$ modes can be transformed into each other via linear optics, without post-selection. In other words, we study the local unitary (LU) equivalence classes of symmetric many-qudit states. Writing our state as $f^dagger|Omegarangle$, with $f^dagger$ a homogeneous polynomial in the mode creation operators, we propose two sets of LU-invariants: (a) spectral invariants, which are the eigenvalues of the operator $ff^dagger$, and (b) moments, each given by the norm of the symmetric component of a tensor power of the initial state, which can be computed as vacuum expectation values of $f^k(f^dagger)^k$. We provide scheme for experimental measurement of the later, as related to the post-selection probability of creating state $f^{dagger k}|Omegarangle$ from $k$ copies of $f^{dagger}|Omegarangle$.
The evolution of quantum light through linear optical devices can be described by the scattering matrix $S$ of the system. For linear optical systems with $m$ possible modes, the evolution of $n$ input photons is given by a unitary matrix $U=varphi_{
Linear optical systems acting on photon number states produce many interesting evolutions, but cannot give all the allowed quantum operations on the input state. Using Toponogovs theorem from differential geometry, we propose an iterative method that
A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl-Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separabl
Using only linear optical elements, the creation of dual-rail photonic entangled states is inherently probabilistic. Known entanglement generation schemes have low success probabilities, requiring large-scale multiplexing to achieve near-deterministi
I present an extensible experimental design for optical continuous-variable cluster states of arbitrary size using four offline (vacuum) squeezers and six beamsplitters. This method has all the advantages of a temporal-mode encoding [Phys. Rev. Lett.