ﻻ يوجد ملخص باللغة العربية
We report measurements on magnetization reversal in the Fe$_8$ molecular magnet using fast pulsed magnetic fields of 1.5 kT/s and in the temperature range of 0.6-4.1 K. We observe and analyze the temperature dependence of the reversal process, which involves in some cases several resonances. Our experiments allow observation of resonant quantum tunneling of magnetization up to a temperature of $sim$ 4 K. We also observe shifts of the resonance fields in temperature that suggest the emergence of a thermal instability---a combination of spin reversal and self-heating that may result in a magnetic deflagration process. The results are mainly understood in the framework of thermally-activated quantum tunneling transitions in combination with emergence of a thermal instability.
The magneto-conductance of an open carbon nanotube (CNT)-quantum wire was measured in pulsed magnetic fields. At low temperatures we find a peculiar split magneto-conductance peak close to the charge neutrality point. Our analysis of the data reveals
The reversal of spins in a magnetic material as they relax toward equilibrium is accompanied by the release of Zeeman energy which can lead to accelerated spin relaxation and the formation of a well-defined self-sustained propagating spin-reversal fr
The synthesis, crystal structure and magnetic characterization of a high spin cluster comprising eight iron ions, are presented in this contribution. The cluster has formula [(tacn)6Fe8O2(OH)12Br4.3(ClO4)3.7]6H2O, (Fe8PCL) where tacn is the organic l
We study the dynamics of a localized spin-1/2 driven by a time-periodic magnetic field that undergoes a topological transition. Despite the strongly non-adiabatic effects dominating the spin dynamics, we find that the fields topology appears clearly
We have measured the dynamic alignment properties of single-walled carbon nanotube (SWNT) suspensions in pulsed high magnetic fields through linear dichroism spectroscopy. Millisecond-duration pulsed high magnetic fields up to 56 T as well as microse