ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric fundamental band CO lines as a sign of an embedded giant planet

345   0   0.0 ( 0 )
 نشر من قبل Zsolt Regaly
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the formation of double-peaked asymmetric line profiles of CO in the fundamental band spectra emitted by young (1-5Myr) protoplanetary disks hosted by a 0.5-2 Solar mass star. Distortions of the line profiles can be caused by the gravitational perturbation of an embedded giant planet with q=4.7 10^-3 stellar-to-planet mass ratio. Locally isothermal, 2D hydrodynamic simulations show that the disk becomes globally eccentric inside the planetary orbit with stationary ~0.2-0.25 average eccentricity after ~2000 orbital periods. For orbital distances 1-10 AU, the disk eccentricity is peaked inside the region where the fundamental band of CO is thermal excitated. Hence, these lines become a sensitive indicators of the embedded planet via their asymmetries (both in flux and wavelength). We find that the line shape distortions (e.g. distance, central dip, asymmetry and positions of peaks) of a given transition depend on the excitation energy (i.e. on the rotational quantum number J). The magnitude of line asymmetry is increasing/decreasing with J if the planet orbits inside/outside the CO excitation zone (R_CO<=3, 5 and 7 AU for a 0.5,1 and 2 Solar mass star, respectively), thus one can constrain the orbital distance of a giant planet by determining the slope of peak asymmetry-J profile. We conclude that the presented spectroscopic phenomenon can be used to test the predictions of planet formation theories by pushing the age limits for detecting the youngest planetary systems.

قيم البحث

اقرأ أيضاً

Exoplanet surveys of evolved stars have provided increasing evidence that the formation of giant planets depends not only on stellar metallicity ([Fe/H]), but also the mass ($M_star$). However, measuring accurate masses for subgiants and giants is fa r more challenging than it is for their main-sequence counterparts, which has led to recent concerns regarding the veracity of the correlation between stellar mass and planet occurrence. In order to address these concerns we use HIRES spectra to perform a spectroscopic analysis on an sample of 245 subgiants and derive new atmospheric and physical parameters. We also calculate the space velocities of this sample in a homogeneous manner for the first time. When reddening corrections are considered in the calculations of stellar masses and a -0.12 M$_{odot}$ offset is applied to the results, the masses of the subgiants are consistent with their space velocity distributions, contrary to claims in the literature. Similarly, our measurements of their rotational velocities provide additional confirmation that the masses of subgiants with $M_star geq 1.6$ M$_{odot}$ (the Retired A Stars) have not been overestimated in previous analyses. Using these new results for our sample of evolved stars, together with an updated sample of FGKM dwarfs, we confirm that giant planet occurrence increases with both stellar mass and metallicity up to 2.0 M$_{odot}$. We show that the probability of formation of a giant planet is approximately a one-to-one function of the total amount of metals in the protoplanetary disk $M_star 10^{[Fe/H]}$. This correlation provides additional support for the core accretion mechanism of planet formation.
95 - Tristan Guillot 2010
Context: CoRoT-2b is one of the most anomalously large exoplanet known. Given its large mass, its large radius cannot be explained by standard evolution models. Interestingly, the planets parent star is an active, rapidly rotating solar-like star wit h a large fraction (7 to 20%) of spots. Aims: We want to provide constraints on the properties of the star-planet system and understand whether the planets inferred large size may be due to a systematic error on the inferred parameters, and if not, how it may be explained. Methods: We combine stellar and planetary evolution codes based on all available spectroscopic and photometric data to obtain self-consistent constraints on the system parameters. Results: We find no systematic error in the stellar modeling (including spots and stellar activity) that would yield the required ~10% reduction in size for the star and thus the planet. Two classes of solutions are found: the usual main sequence solution for the star yields for the planet a mass of 3.67+/-0.13 Mjup, a radius of 1.55+/-0.03 Rjup for an age that is at least 130Ma, and should be less than 500Ma given the stars fast rotation and significant activity. We identify another class of solutions on the pre-main sequence, in which case the planets mass is 3.45pm 0.27 Mjup, its radius is 1.50+/-0.06 Rjup for an age between 30 and 40 Ma. These extremely young solutions provide the simplest explanation for the planets size which can then be matched by a simple contraction from an initially hot, expanded state, provided the atmospheric opacities are increased by a factor ~3 compared to usual assumptions for solar compositions atmospheres. Other solutions imply in any case that the present inflated radius of CoRoT-2b is transient and the result of an event that occurred less than 20 Ma ago: a giant impact with another Jupiter-mass planet, or interactions with another object in the system which caused a significant rise of the eccentricity followed by the rapid circularization of its orbit. Conclusions: Additional observations of CoRoT-2 that could help understanding this system include searches for infrared excess and the presence of a debris disk and searches for additional companions. The determination of a complete infrared lightcurve including both the primary and secondary transits would also be extremely valuable to constrain the planets atmospheric properties and to determine the planet-to-star radius ratio in a manner less vulnerable to systematic errors due to stellar activity.
Understanding the dominant brown dwarf and giant planet formation processes, and finding out whether these processes rely on completely different mechanisms or share common channels represents one of the major challenges of astronomy and remains the subject of heated debates. It is the aim of this review to summarize the latest developments in this field and to address the issue of origin by confronting different brown dwarf and giant planet formation scenarios to presently available observational constraints. As examined in the review, if objects are classified as Brown Dwarfs or Giant Planets on the basis of their formation mechanism, it has now become clear that their mass domains overlap and that there is no mass limit between these two distinct populations. Furthermore, while there is increasing observational evidence for the existence of non-deuterium burning brown dwarfs, some giant planets, characterized by a significantly metal enriched composition, might be massive enough to ignite deuterium burning in their core. Deuterium burning (or lack of) thus plays no role in either brown dwarf or giant planet formation. Consequently, we argue that the IAU definition to distinguish these two populations has no physical justification and brings scientific confusion. In contrast, brown dwarfs and giant planets might bear some imprints of their formation mechanism, notably in their mean density and in the physical properties of their atmosphere. Future direct imaging surveys will undoubtedly provide crucial information and perhaps provide some clear observational diagnostics to unambiguously distinguish these different astrophysical objects.
For over 10 years, we have carried out a precise radial velocity (RV) survey to find substellar companions around evolved G,K-type stars to extend our knowledge of planet formation and evolution. We performed high precision RV measurements for the gi ant star HD 208897 using an iodine (I2) absorption cell. The measurements were made at TUB.ITAK National Observatory (TUG, RTT150) and Okayama Astrophysical Observatory (OAO). For the origin of the periodic variation seen in the RV data of the star, we adopted a Keplerian motion caused by an unseen companion. We found that the star hosts a planet with a minimum mass of m2sini=1.40MJ, which is relatively low compared to those of known planets orbiting evolved intermediate-mass stars. The planet is in a nearly circular orbit with a period of P=353 days at about 1 AU distance from the host star. The star is metal rich and located at the early phase of ascent along the red giant branch. The photometric observations of the star at Ankara University Kreiken Observatory (AUKR) and the HIPPARCOS photometry show no sign of variation with periods associated with the RV variation. Neither bisector velocity analysis nor analysis of the Ca II and Halpha lines shows any correlation with the RV measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا