ترغب بنشر مسار تعليمي؟ اضغط هنا

Atomic resolution mapping of phonon excitations in STEM-EELS experiments

114   0   0.0 ( 0 )
 نشر من قبل Ricardo Egoavil
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomically resolved electron energy-loss spectroscopy experiments are commonplace in modern aberrationcorrected transmission electron microscopes. Energy resolution has also been increasing steadily with the continuous improvement of electron monochromators. Electronic excitations however are known to be delocalised due to the long range interaction of the charged accelerated electrons with the electrons in a sample. This has made several scientists question the value of combined high spatial and energy resolution for mapping interband transitions and possibly phonon excitation in crystals. In this paper we demonstrate experimentally that atomic resolution information is indeed available at very low energy losses around 100 meV expressed as a modulation of the broadening of the zero loss peak. Careful data analysis allows us to get a glimpse of what are likely phonon excitations with both an energy loss and gain part. These experiments confirm recent theoretical predictions on the strong localisation of phonon excitations as opposed to electronic excitations and show that a combination of atomic resolution and recent developments in increased energy resolution will offer great benefit for mapping phonon modes in real space.

قيم البحث

اقرأ أيضاً

The high beam current and sub-angstrom resolution of aberration-corrected scanning transmission electron microscopes has enabled electron energy loss spectroscopic (EELS) mapping with atomic resolution. These spectral maps are often dose-limited and spatially oversampled, leading to low counts/channel and are thus highly sensitive to errors in background estimation. However, by taking advantage of redundancy in the dataset map one can improve background estimation and increase chemical sensitivity. We consider two such approaches- linear combination of power laws and local background averaging-that reduce background error and improve signal extraction. Principal components analysis (PCA) can also be used to analyze spectrum images, but the poor peak-to-background ratio in EELS can lead to serious artifacts if raw EELS data is PCA filtered. We identify common artifacts and discuss alternative approaches. These algorithms are implemented within the Cornell Spectrum Imager, an open source software package for spectroscopic analysis.
103 - B. Evin , E. Leroy , M. Segard 2021
3He nanobubbles created by radioactive decay of tritium in palladium tritide are investigated after several years of aging. Scanning Transmission Electron Microscopy Electron Energy-Loss Spectroscopy (STEM-EELS) has been used to measure helium densit y from the helium K-edge around 23 eV. Helium densities were found between 20 and 140 (+/-30) He/nm3 and the corresponding nanobubble pressures range between 0.1 and 3 (+/-0.2) GPa. Measuring helium density and mapping He atoms by STEM-EELS enables to differentiate bubbles from empty cavities in the palladium tritide matrix.
Inorganic lead halide perovskites are promising candidates for optoelectronic applications, due to their bandgap tunability, high photoluminescence quantum yield, and narrow emission line widths. In particular, they offer the possibility to vary the bandgap as a function of the halide composition and dimension/shape of the crystals at the nanoscale. Here we present an aberration-corrected scanning transmission microscopy (STEM) study of extended nanosheets of CsPbBr3 directly demonstrating their orthorhombic crystal structure and their lateral termination with Cs-Br planes. The bandgaps from individual nanosheets are measured by monochromated electron energy loss spectroscopy (EELS). We find an increase of the bandgap starting at thicknesses below 10 nm, confirming the less dramatic effect of 1D confinement in nanosheets compared to the 3D confinement observed in quantum dots, as predicted by density functional theory calculations and optical spectroscopy data from ensemble measurements.
This paper discusses the reconstruction of partially sampled spectrum-images to accelerate the acquisition in scanning transmission electron microscopy (STEM). The problem of image reconstruction has been widely considered in the literature for many imaging modalities, but only a few attempts handled 3D data such as spectral images acquired by STEM electron energy loss spectroscopy (EELS). Besides, among the methods proposed in the microscopy literature, some are fast but inaccurate while others provide accurate reconstruction but at the price of a high computation burden. Thus none of the proposed reconstruction methods fulfills our expectations in terms of accuracy and computation complexity. In this paper, we propose a fast and accurate reconstruction method suited for atomic-scale EELS. This method is compared to popular solutions such as beta process factor analysis (BPFA) which is used for the first time on STEM-EELS images. Experiments based on real as synthetic data will be conducted.
In this work, we emphasize the important contribution of the 2s Bloch wave state to the properties of a STEM electron probe propagating on an atomic column. For a strong enough column potential, the confinement of the 2s state leads to a long-period oscillation of the electron wave function, which is reflected in the resulting STEM-HAADF intensity. We show how this influences STEM composition quantification even at large thicknesses. We found additionally that the excitation of the 2s state affects the intensity of alloys where long-range order phenomena are present, which in turn provides a way to probe the degree of order in alloys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا