ترغب بنشر مسار تعليمي؟ اضغط هنا

Patchy Accretion Disks in Ultraluminous X-ray Sources

166   0   0.0 ( 0 )
 نشر من قبل Jon M. Miller
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. M. Miller




اسأل ChatGPT حول البحث

The X-ray spectra of the most extreme ultra-luminous X-ray sources -- those with L > 1 E+40 erg/s -- remain something of a mystery. Spectral roll-over in the 5-10 keV band was originally detected in in the deepest XMM-Newton observations of the brightest sources; this is confirmed in subsequent NuSTAR spectra. This emission can be modeled via Comptonization, but with low electron temperatures (kT_e ~ 2 keV) and high optical depths (tau ~ 10) that pose numerous difficulties. Moreover, evidence of cooler thermal emission that can be fit with thin disk models persists, even in fits to joint XMM-Newton and NuSTAR observations. Using NGC 1313 X-1 as a test case, we show that a patchy disk with a multiple temperature profile may provide an excellent description of such spectra. In principle, a number of patches within a cool disk might emit over a range of temperatures, but the data only require a two-temperature profile plus standard Comptonization, or three distinct blackbody components. A mechanism such as the photon bubble instability may naturally give rise to a patchy disk profile, and could give rise to super-Eddington luminosities. It is possible, then, that a patchy disk (rather than a disk with a standard single-temperature profile) might be a hallmark of accretion disks close to or above the Eddington limit. We discuss further tests of this picture, and potential implications for sources such as narrow-line Seyfert-1 galaxies (NLSy1s) and other low-mass active galactic nuclei (AGN).



قيم البحث

اقرأ أيضاً

We review observations of ultraluminous X-ray sources (ULXs). X-ray spectroscopic and timing studies of ULXs suggest a new accretion state distinct from those seen in Galactic stellar-mass black hole binaries. The detection of coherent pulsations ind icates the presence of neutron-star accretors in three ULXs and therefore apparently super-Eddington luminosities. Optical and X-ray line profiles of ULXs and the properties of associated radio and optical nebulae suggest that ULXs produce powerful outflows, also indicative of super-Eddington accretion. We discuss models of super-Eddington accretion and their relation to the observed behaviors of ULXs. We review the evidence for intermediate mass black holes in ULXs. We consider the implications of ULXs for super-Eddington accretion in active galactic nuclei, heating of the early universe, and the origin of the black hole binary recently detected via gravitational waves.
The black hole mass and accretion rate in Ultraluminous X-ray sources (ULXs) in external galaxies, whose X-ray luminosities exceed those of the brightest black holes in our Galaxy by hundreds and thousands of times$^{1,2}$, is an unsolved problem. He re we report that all ULXs ever spectroscopically observed have about the same optical spectra apparently of WNL type (late nitrogen Wolf-Rayet stars) or LBV (luminous blue variables) in their hot state, which are very scarce stellar objects. We show that the spectra do not originate from WNL/LBV type donors but from very hot winds from the accretion discs with nearly normal hydrogen content, which have similar physical conditions as the stellar winds from these stars. The optical spectra are similar to that of SS 433, the only known supercritical accretor in our Galaxy$^{3}$, although the ULX spectra indicate a higher wind temperature. Our results suggest that ULXs with X-ray luminosities of $sim 10^{40}$ erg s$^{-1}$ must constitute a homogeneous class of objects, which most likely have supercritical accretion discs.
Although ultra-luminous X-ray sources (ULX) are important for astrophysics due to their extreme apparent super-Eddington luminosities, their nature is still poorly known. Theoretical and observational studies suggest that ULXs could be a diversified group of objects composed of low-mass X-ray binaries, high-mass X-ray binaries and marginally also systems containing intermediate-mass black holes, which is supported by their presence in a variety of environments. Observational data on the ULX donors could significantly boost our understanding of these systems, but only a few were detected. There are several candidates, mostly red supergiants (RSGs), but surveys are typically biased toward luminous near-infrared objects. Nevertheless, it is worth exploring if RSGs can be members of ULX binaries. In such systems matter accreted onto the compact body would have to be provided by the stellar wind of the companion, since a Roche-lobe overflow could be unstable for relevant mass-ratios. Here we present a comprehensive study of the evolution and population of wind-fed ULXs and provide a theoretical support for the link between RSGs and ULXs. Our estimated upper limit on contribution of wind-fed ULX to the overall ULX population is $sim75$--$96%$ for young ($<100$ Myr) star forming environments, $sim 49$--$87%$ for prolonged constant star formation (e.g., disk of Milky Way), and $lesssim1%$ for environments in which star formation ceased long time ($>2$ Gyr) ago. We show also that some wind-fed ULXs (up to $6%$) may evolve into merging double compact objects (DCOs), but typical systems are not viable progenitors of such binaries because of their large separations. We demonstrate that, the exclusion of wind-fed ULXs from population studies of ULXs, might have lead to systematical errors in their conclusions.
203 - A. R. King 2008
I show that extreme beaming factors $b$ are not needed to explain ULXs as stellar--mass binaries. For neutron star accretors one typically requires $b sim 0.13$, and for black holes almost no beaming ($b sim 0.8$). The main reason for the high appare nt luminosity is the logarithmic increase in the limiting luminosity for super--Eddington accretion. The required accretion rates are explicable in terms of thermal--timescale mass transfer from donor stars of mass $6 - 10msun$, or possibly transient outbursts. Beaming factors $la 0.1$ would be needed to explain luminosities significantly above $10^{40}L_{40}$ erg s$^{-1}$, but these requirements are relaxed somewhat if the accreting matter has low hydrogen content.
We study spectral variability of 11 ultraluminous X-ray sources (ULX) using archived XMM-Newton and Chandra observations. We use three models to describe the observed spectra: a power-law, a multi-colour disc (MCD) and a combination of these two mode ls. We find that 7 ULXs show a correlation between the luminosity Lx and the photon index Gamma. Furthermore, 4 out of these 7 ULXs also show spectral pivoting in the observed energy band. We also find that two ULXs show an Lx-Gamma anti-correlation. The spectra of 4 ULXs in the sample can be adequately fitted with a MCD model. We compare these sources to known black hole binaries (BHB) and find that they follow similar paths in their luminosity-temperature diagrams. Finally we show that the `soft excess reported for many of these ULXs at about 0.2 keV seems to roughly follow a trend Lsoft propto T^{-3.5} when modelled with a power-law plus a `cool MCD model. This is contrary to the L propto T^4 relation that is expected from theory and what is seen for many accreting BHBs. The observed trend could instead arise from disc emission beamed by an outflowing wind around a about 10 solar mass black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا