ترغب بنشر مسار تعليمي؟ اضغط هنا

Density Profiles of Liquid/Vapor Interfaces Away from Their Critical Point

168   0   0.0 ( 0 )
 نشر من قبل David Vaknin
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine the applicability of various model profiles for the liquid/vapor interface by X-ray reflectivities on water and ethanol and their mixtures at room temperature. Analysis of the X-ray reflecivities using various density profiles shows an error-function like profile is the most adequate within experimental error. Our finding, together with recent observations from simulation studies on liquid surfaces, strongly suggest that the capillary-wave dynamics shapes the interfacial density profile in terms of the error function.



قيم البحث

اقرأ أيضاً

82 - T. Bryk , A.D.J. Haymet 2016
Ice-water, water-vapor interfaces and ice surface are studied by molecular dynamics simulations with the SPC/E model of water molecules having the purpose to estimate the profiles of electrostatic potential across the interfaces. We have proposed a m ethodology for calculating the profiles of electrostatic potential based on a trial particle, which showed good agreement for the case of electrostatic potential profile of the water-vapor interface of TIP4P model calculated in another way. The measured profile of electrostatic potential for the pure ice-water interface decreases towards the liquid bulk region, which is in agreement with simulations of preferential direction of motion of Li$^{+}$ and F$^{-}$ solute ions at the liquid side of the ice-water interface. These results are discussed in connection with the Workman-Reynolds effect.
The study of liquid-liquid phase transition has attracted considerable attention. One interesting example of such phenomenon is phosphorus for which the existence a first-order phase transition between a low density insulating molecular phase and a c onducting polymeric phase has been experimentally established. In this paper, we model this transition by an ab-initio quality molecular dynamics simulation and explore a large portion of the liquid section of the phase diagram. We draw the liquid-liquid coexistence curve and determine that it terminates into a second-order critical point. Close to the critical point, large coupled structure and electronic structure fluctuations are observed.
Previous research has indicated the possible existence of a liquid-liquid critical point (LLCP) in models of silica at high pressure. To clarify this interesting question we run extended molecular dynamics simulations of two different silica models ( WAC and BKS) and perform a detailed analysis of the liquid at temperatures much lower than those previously simulated. We find no LLCP in either model within the accessible temperature range, although it is closely approached in the case of the WAC potential near 4000 K and 5 GPa. Comparing our results with those obtained for other tetrahedral liquids, and relating the average Si-O-Si bond angle and liquid density at the model glass temperature to those of the ice-like beta-cristobalite structure, we conclude that the absence of a critical point can be attributed to insufficient stiffness in the bond angle. We hypothesize that a modification of the potential function to mildly favor larger average bond angles will generate a LLCP in a temperature range that is accessible to simulation. The tendency to crystallize in these models is extremely weak in the pressure range studied, although this tendency will undoubtedly increase with increasing stiffness.
187 - Erik Lascaris 2015
Recently it was shown that the WAC model for liquid silica [L. V. Woodcock, C. A. Angell, and P. Cheeseman, J. Chem. Phys. 65, 1565 (1976)] is remarkably close to having a liquid-liquid critical point (LLCP). We demonstrate that increasing the ion ch arge separates the global maxima of the response functions, while reducing the charge smoothly merges them into a LLCP; a phenomenon that might be experimentally observable with charged colloids. An analysis of the Si and O coordination numbers suggests that a sufficiently low Si/O coordination number ratio is needed to attain a LLCP.
Based on the method of collective variables we develop the statistical field theory for the study of a simple charge-asymmetric $1:z$ primitive model (SPM). It is shown that the well-known approximations for the free energy, in particular DHLL and OR PA, can be obtained within the framework of this theory. In order to study the gas-liquid critical point of SPM we propose the method for the calculation of chemical potential conjugate to the total number density which allows us to take into account the higher order fluctuation effects. As a result, the gas-liquid phase diagrams are calculated for $z=2-4$. The results demonstrate the qualitative agreement with MC simulation data: critical temperature decreases when $z$ increases and critical density increases rapidly with $z$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا