ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity of Ca2InN with a layered structure embedding an anionic indium chain array

113   0   0.0 ( 0 )
 نشر من قبل Jeong Sehoon
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the emergence of superconductivity in Ca2InN consisting of a 2-dimensional (2D) array of zigzag indium chains embedded between Ca2N layers. A sudden drop of resistivity and a specific-heat (Cp) jump attributed to the superconducting transition were observed at 0.6 K. The Sommerfeld coefficient {gamma}= 4.24 mJ/mol K2 and Debye temperature {Theta}D = 322 K were determined from the Cp of the normal conducting state and the superconducting volume fraction was estimated to be ~80% from the Cp jump, assuming a BCS-type weak coupling. Density functional theory calculations demonstrated that the electronic bands near the Fermi level (EF) are mainly derived from In 5p orbitals with {pi} and {sigma} bonding states and the Fermi surface is composed of cylindrical parts, corresponding to the quasi-2D electronic state of the In chain array. By integrating the projected density of states of In-p component up to EF, a valence electron population of ~1.6 electrons/In was calculated, indicating that the partially anionic state of In. The In 3d binding energies observed in Ca2InN by x-ray photoemission spectroscopy were negatively shifted from that in In metal. The superconductivity of Ca2InN is associated with the p-p bonding states of the anionic In layer.



قيم البحث

اقرأ أيضاً

Exploration of new superconductors has always been one of the research directions in condensed matter physics. We report here a new layered heterostructure of [(Fe,Al)(OH)2][FeSe]1.2, which is synthesized by the hydrothermal ion-exchange technique. T he structure is suggested by a combination of X-ray powder diffraction and the electron diffraction (ED). [(Fe,Al)(OH)2][FeSe]1.2 is composed of the alternating stacking of tetragonal FeSe layer and hexagonal (Fe,Al)(OH)2 layer. In [(Fe,Al)(OH)2][FeSe]1.2, there exists mismatch between the FeSe sub-layer and (Fe,Al)(OH)2 sub-layer, and the lattice of the layered heterostructure is quasi-commensurate. The as-synthesized [(Fe,Al)(OH)2][FeSe]1.2 is non-superconducting due to the Fe vacancies in the FeSe layer. The superconductivity with a Tc of 40 K can be achieved after a lithiation process, which is due to the elimination of the Fe vacancies in the FeSe layer. The Tc is nearly the same as that of (Li,Fe)OHFeSe although the structure of [(Fe,Al)(OH)2][FeSe]1.2 is quite different from that of (Li,Fe)OHFeSe. The new layered heterostructure of [(Fe,Al)(OH)2][FeSe]1.2 contains an iron selenium tetragonal lattice interleaved with a hexagonal metal hydroxide lattice. These results indicate that the superconductivity is very robust for FeSe-based superconductors. It opens a path for exploring super-conductivity in iron-base superconductors.
Multi-layered materials provide fascinating platforms to realize various functional properties, possibly leading to future electronic devices controlled by external fields. In particular, layered magnets coupled with conducting layers have been exten sively studied recently for possible control of their transport properties via the spin structure. Successful control of quantum-transport properties in the materials with antiferromagnetic (AFM) layers, so-called natural spin-valve structure, has been reported for the Dirac Fermion and topological/axion materials. However, a bulk crystal in which magnetic and superconducting layers are alternately stacked has not been realized until now, and the search for functional properties in it is an interesting yet unexplored field in material science. Here, we discover superconductivity providing such an ideal platform in EuSn2As2 with the van der Waals stacking of magnetic Eu layers and superconducting Sn-As layers, and present the first demonstration of a natural spin-valve effect on the superconducting current. Below the superconducting transition temperature (Tc), the electrical resistivity becomes zero in the in-plane direction. In contrast, it, surprisingly, remains finite down to the lowest temperature in the out-of-plane direction, mostly due to the structure of intrinsic magnetic Josephson junctions in EuSn2As2. The magnetic order of the Eu layers (or natural spin-valve) is observed to be extremely soft, allowing one to easy control of the out-of-plane to in-plane resistivities ratio from 1 to infinity by weak external magnetic fields. The concept of multi-functional materials with stacked magnetic-superconducting layers will open a new pathway to develop novel spintronic devices with magnetically controllable superconductivity.
Bulk superconductivity was discovered in BaRh2P2 (Tc = 1.0 K) and BaIr2P2 (Tc = 2.1 K), which are isostructural to (Ba,K)Fe2As2, indicative of the appearance of superconductivity over a wide variety of layered transition metal pnictides. The electron ic specific heat coefficient gamma in the normal state, 9.75 and 6.86 mJ/mol K2 for BaRh2P2 and BaIr2P2 respectively, indicate that the electronic density of states of these two compounds are moderately large but smaller than those of Fe pnictide superconductors. The Wilson ratio close to 1 indeed implies the absence of strong electron correlations and magnetic fluctuations unlike Fe pnictides.
Here we report the synthesis and superconductivity of a novel ternary compound LaPd2Bi2. Shiny plate-like single crystals of LaPd2Bi2 were first synthesized by high-temperature solution method with PdBi flux. X-ray diffraction analysis indicates that LaPd2Bi2 belongs to the primitive tetragonal CaBe2Ge2-type structure with the space group P4/nmm (No. 129), and the refined lattice parameters are a = 4.717(2) {AA}, c = 9.957(3) {AA}. Electrical resistivity and magnetic susceptibility measurements reveal that LaPd2Bi2 undergoes a superconducting transition at 2.83 K and exhibits the characteristics of type-II superconductivity. The discovery of superconductivity in LaPd2Bi2 with CaBe2Ge2-type structure may help to further understand the possible relationship between the occurrence of superconductivity and the crystal structures in 122-type materials.
151 - Shruti , V. K. Maurya , P. Neha 2015
Strontium intercalation between van der Waals bonded layers of topological insulator Bi2Se3 is found to induce superconductivity with a maximum Tc of 2.9 K. Transport measurement on single crystal of optimally doped sample Sr0.1Bi2Se3 shows weak anis otropy (1.5) and upper critical field Hc2(0) equals to 2.1 T for magnetic field applied per-pendicular to c -axis of the sample. The Ginzburg-Landau coherence lengths are Xi-ab = 15.3 {AA} and Xi_c = 10.2 {AA}. The lower critical field and zero temperature penetration depth Lambda(0) are estimated to be 0.35 mT and 1550 nm respectively. Hall and Seebeck measurements confirm the dominance of electronic conduction and the carrier concentration is surprisingly low (n = 1.85 x 10^19 cm-3) at 10 K indicating possibility of unconventional superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا