ﻻ يوجد ملخص باللغة العربية
We represent N-body Coulomb energy in a localized form to achieve massive parallelism. It is a well-known fact that Greens functions can be written as path integrals of field theory. Since two-body Coulomb potential is a Greens function of Poisson equations, it reduces to a path integral of free scalar field theory with three spatial dimensions. This means that N-body one also reduces to a path integral. We discretize real space with a cubic lattice and evaluate the obtained multiple integrals approximately with the Markov-chain Monte Carlo method.
An expression for the Green function G(E;x_1,x_2) of the Schroedinger equation is obtained through the approximations of the path integral by n-fold multiple integrals. The approximations to Re{G(E;x,x)} on the real E-axis have peaks near the values
We study the decomposition of the Coulomb integrals of periodic systems into a tensor contraction of six matrices of which only two are distinct. We find that the Coulomb integrals can be well approximated in this form already with small matrices com
Whenever variables $phi=(phi^1,phi^2,ldots)$ are discarded from a system, and the discarded information capacity $mathcal{S}(x)$ depends on the value of an observable $x$, a quantum correction $Delta V_mathrm{eff}(x)$ appears in the effective potenti
Deep learning has fostered many novel applications in materials informatics. However, the inverse design of inorganic crystals, $textit{i.e.}$ generating new crystal structure with targeted properties, remains a grand challenge. An important ingredie
The Breit correction, the finite-light-speed correction for the Coulomb interaction of the electron-electron interaction in $ O left( 1/ c^2 right) $, is introduced to density functional theory (DFT) based on the non-relativistic reduction with the l