ﻻ يوجد ملخص باللغة العربية
We study the capture of galactic dark matter particles (DMP) in two-body and few-body systems with a symplectic map description. This approach allows modeling the scattering of $10^{16}$ DMPs after following the time evolution of the captured particle on about $10^9$ orbital periods of the binary system. We obtain the DMP density distribution inside such systems and determine the enhancement factor of their density in a center vicinity compared to its galactic value as a function of the mass ratio of the bodies and the ratio of the body velocity to the velocity of the galactic DMP wind. We find that the enhancement factor can be on the order of tens of thousands.
We study the capture of dark matter particles by neutron stars in close binary systems. By performing a direct numerical simulation, we find that there is a sizable amplification of the rate of dark matter capture by each of the companions. In case o
We study the capture of galactic dark matter particles in the Solar System produced by rotation of Jupiter. It is shown that the capture cross section is much larger than the area of Jupiter orbit being inversely diverging at small particle energy. W
We investigate the stability of prograde versus retrograde planets in circular binary systems using numerical simulations. We show that retrograde planets are stable up to distances closer to the perturber than prograde planets. We develop an analyti
We consider the long-range effect of the Higgs on the density of thermal-relic dark matter. While the electroweak gauge boson and gluon exchange have been previously studied, the Higgs is typically thought to mediate only contact interactions. We sho
We investigate the statistical properties of the complexness parameter which characterizes uniquely complexness (biorthogonality) of resonance eigenstates of open chaotic systems. Specifying to the regime of isolated resonances, we apply the random m