ترغب بنشر مسار تعليمي؟ اضغط هنا

Sudden reversal in the pressure dependence of Tc in the iron-based superconductor CsFe2As2: A possible link between inelastic scattering and pairing symmetry

263   0   0.0 ( 0 )
 نشر من قبل Fazel Tafti
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a sudden reversal in the pressure dependence of Tc in the iron-based superconductor CsFe2As2, similar to that discovered recently in KFe2As2 [Tafti et al., Nat. Phys. 9, 349 (2013)]. As in KFe2As2, we observe no change in the Hall coefficient at the zero temperature limit, again ruling out a Lifshitz transition across the critical pressure Pc. We interpret the Tc reversal in the two materials as a phase transition from one pairing state to another, tuned by pressure, and investigate what parameters control this transition. Comparing samples of different residual resistivity, we find that a 6-fold increase in impurity scattering does not shift Pc. From a study of X-ray diffraction on KFe2As2 under pressure, we report the pressure dependence of lattice constants and As-Fe-As bond angle. The pressure dependence of these lattice parameters suggests that Pc should be significantly higher in CsFe2As2 than in KFe2As2, but we find on the contrary that Pc is lower in CsFe2As2. Resistivity measurements under pressure reveal a change of regime across Pc, suggesting a possible link between inelastic scattering and pairing symmetry.



قيم البحث

اقرأ أيضاً

The pairing mechanism in iron-based superconductors is the subject of ongoing debate. Proximity to an antiferromagnetic phase suggests that pairing is mediated by spin fluctuations, but orbital fluctuations have also been invoked. The former typicall y favour a pairing state of extended s-wave symmetry with a gap that changes sign between electron and hole Fermi surfaces (s+-), while the latter yield a standard s-wave state without sign change (s++). Here we show that applying pressure to KFe2As2 induces a change of pairing state. The critical temperature Tc decreases with pressure initially, and then suddenly increases, above a critical pressure Pc. The constancy of the Hall coefficient through Pc rules out a change in the Fermi surface. There is compelling evidence that the pairing state below Pc is d-wave, from bulk measurements at ambient pressure. Above Pc, the high sensitivity to disorder argues for a particular kind of s+- state. The change from d-wave to s-wave is likely to proceed via an unusual s + id state that breaks time-reversal symmetry. The proximity of two distinct pairing states found here experimentally is natural given the near degeneracy of d-wave and s+- states found theoretically. These findings make a compelling case for spin-fluctuation-mediated superconductivity in this key iron-arsenide material.
We report a sudden reversal in the pressure dependence of Tc in the iron-based superconductor RbFe2As2, at a critical pressure Pc = 11 kbar. Combined with our prior results on KFe2As2 and CsFe2As2, we find a universal V-shaped phase diagram for Tc vs P in these fully hole-doped 122 materials, when measured relative to the critical point (Pc, Tc). From measurements of the upper critical field Hc2(T) under pressure in KFe2As2 and RbFe2As2, we observe the same two-fold jump in (1/Tc)(-dHc2/dT) across Pc, compelling evidence for a sudden change in the structure of the superconducting gap. We argue that this change is due to a transition from one pairing state to another, with different symmetries on either side of Pc. We discuss a possible link between scattering and pairing, and a scenario where a d-wave state favored by high-Q scattering at low pressure changes to a state with s+- symmetry favored by low-Q scattering at high pressure.
In iron selenide superconductors only electron-like Fermi pockets survive, challenging the $S^{pm}$ pairing based on the quasi-nesting between the electron and hole Fermi pockets (as in iron arsenides). By functional renormalization group study we sh ow that an in-phase $S$-wave pairing on the electron pockets ($S^{++}_{ee}$) is realized. The pairing mechanism involves two competing driving forces: The strong C-type spin fluctuations cause attractive pair scattering between and within electron pockets via Cooperon excitations on the virtual hole pockets, while the G-type spin fluctuations cause repulsive pair scattering. The latter effect is however weakened by the hybridization splitting of the electron pockets. The resulting $S^{++}_{ee}$-wave pairing symmetry is consistent with experiments. We further propose that the quasiparticle interference pattern in scanning tunneling microscopy and the Andreev reflection in out-of-plane contact tunneling are efficient probes of in-phase versus anti-phase $S$-wave pairing on the electron pockets.
135 - G. F. Ji , J. S. Zhang , Long Ma 2013
We present a high-pressure NMR study of the overdoped iron pnictide superconductor NaFe$_{0.94}$Co$_{0.06}$As. The low-energy antiferromagnetic spin fluctuations in the normal state, manifest as the Curie-Weiss upturn in the spin-lattice relaxation r ate $1/^{75}T_1T$, first increase strongly with pressure but fall again at $P > P_{rm opt} =$ 2.2 GPa. Neither long-ranged magnetic order nor a structural phase transition is encountered up to 2.5 GPa. The superconducting transition temperature $T_c$ shows a pressure-dependence identical to the spin fluctuations. Our observations demonstrate that magnetic correlations and superconductivity are optimized simultaneously as a function of the electronic structure, thereby supporting very strongly a magnetic origin of superconductivity.
102 - T. Shang , M. Smidman , A. Wang 2020
By employing a series of experimental techniques, we provide clear evidence that CaPtAs represents a rare example of a noncentrosymmetric superconductor which simultaneously exhibits nodes in the superconducting gap and broken time-reversal symmetry (TRS) in its superconducting state (below $T_c$ $approx$ 1.5 K). Unlike in fully-gapped superconductors, the magnetic penetration depth $lambda(T)$ does not saturate at low temperatures, but instead it shows a $T^2$-dependence, characteristic of gap nodes. Both the superfluid density and the electronic specific heat are best described by a two-gap model comprising of a nodeless gap and a gap with nodes, rather than by single-band models. At the same time, zero-field muon-spin spectra exhibit increased relaxation rates below the onset of superconductivity, implying that TRS is broken in the superconducting state of CaPtAs, hence indicating its unconventional nature. Our observations suggest CaPtAs to be a new remarkable material which links two apparently disparate classes, that of TRS-breaking correlated magnetic superconductors with nodal gaps and the weakly-correlated noncentrosymmetric superconductors with broken TRS, normally exhibiting only a fully-gapped behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا