ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Low-Mass WIMPs with SuperCDMS

137   0   0.0 ( 0 )
 نشر من قبل Adam Anderson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a first search for weakly interacting massive particles (WIMPs) using the background rejection capabilities of SuperCDMS. An exposure of 577 kg-days was analyzed for WIMPs with mass < 30 GeV/c2, with the signal region blinded. Eleven events were observed after unblinding. We set an upper limit on the spin-independent WIMP-nucleon cross section of 1.2e-42 cm2 at 8 GeV/c2. This result is in tension with WIMP interpretations of recent experiments and probes new parameter space for WIMP-nucleon scattering for WIMP masses < 6 GeV/c2.



قيم البحث

اقرأ أيضاً

This article presents an analysis and the resulting limits on light dark matter inelastically scattering off of electrons, and on dark photon and axion-like particle absorption, using a second-generation SuperCDMS high-voltage eV-resolution detector. The 0.93 gram Si detector achieved a 3 eV phonon energy resolution; for a detector bias of 100 V, this corresponds to a charge resolution of 3% of a single electron-hole pair. The energy spectrum is reported from a blind analysis with 1.2 gram-days of exposure acquired in an above-ground laboratory. With charge carrier trapping and impact ionization effects incorporated into the dark matter signal models, the dark matter-electron cross section $bar{sigma}_{e}$ is constrained for dark matter masses from 0.5--$10^{4} $MeV$/c^{2}$; in the mass range from 1.2--50 eV$/c^{2}$ the dark photon kinetic mixing parameter $varepsilon$ and the axioelectric coupling constant $g_{ae}$ are constrained. The minimum 90% confidence-level upper limits within the above mentioned mass ranges are $bar{sigma}_{e},=,8.7times10^{-34}$ cm$^{2}$, $varepsilon,=,3.3times10^{-14}$, and $g_{ae},=,1.0times10^{-9}$.
SuperCDMS is an experiment designed to directly detect Weakly Interacting Massive Particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this paper, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage- assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for 10 live days at the Soudan Underground Laboratory. A low energy threshold of 170 eVee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.
202 - J. Suzuki , T. Horie , Y. Inoue 2015
A search for hidden photon cold dark matter (HP CDM) using a new technique with a dish antenna is reported. From the result of the measurement, we found no evidence for the existence of HP CDM and set an upper limit on the photon-HP mixing parameter $chi$ of $sim 6times 10^{-12}$ for the hidden photon mass $m_gamma = 3.1 pm 1.2$ eV.
We present the first limits on inelastic electron-scattering dark matter and dark photon absorption using a prototype SuperCDMS detector having a charge resolution of 0.1 electron-hole pairs (CDMS HVeV, a 0.93 gram CDMS HV device). These electron-rec oil limits significantly improve experimental constraints on dark matter particles with masses as low as 1 MeV/$mathrm{c^2}$. We demonstrate a sensitivity to dark photons competitive with other leading approaches but using substantially less exposure (0.49 gram days). These results demonstrate the scientific potential of phonon-mediated semiconductor detectors that are sensitive to single electronic excitations.
We present the results of a search for elastic scattering from galactic dark matter in the form of Weakly Interacting Massive Particles (WIMPs) in the 4-30 GeV/$c^2$ mass range. We make use of a 582 kg-day fiducial exposure from an array of 800 g Ger manium bolometers equipped with a set of interleaved electrodes with full surface coverage. We searched specifically for $sim 2.5-20$ keV nuclear recoils inside the detector fiducial volume. As an illustration the number of observed events in the search for 5 (resp. 20) GeV/$c^2$ WIMPs are 9 (resp. 4), compared to an expected background of 6.1 (resp. 1.4). A 90% CL limit of $4.3times 10^{-40}$ cm$^2$ (resp. $9.4times 10^{-44}$ cm$^2$) is set on the spin-independent WIMP-nucleon scattering cross-section for 5 (resp. 20) GeV/$c^2$ WIMPs. This result represents a 41-fold improvement with respect to the previous EDELWEISS-II low-mass WIMP search for 7 GeV/$c^2$ WIMPs. The derived constraint is in tension with hints of WIMP signals from some recent experiments, thus confirming results obtained with different detection techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا