ترغب بنشر مسار تعليمي؟ اضغط هنا

Gemini multi-conjugate adaptive optics system review II: Commissioning, operation and overall performance

180   0   0.0 ( 0 )
 نشر من قبل Benoit Neichel
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Benoit Neichel




اسأل ChatGPT حول البحث

The Gemini Multi-conjugate Adaptive Optics System - GeMS, a facility instrument mounted on the Gemini South telescope, delivers a uniform, near diffraction limited images at near infrared wavelengths (0.95 microns- 2.5 microns) over a field of view of 120 arc seconds. GeMS is the first sodium layer based multi laser guide star adaptive optics system used in astronomy. It uses five laser guide stars distributed on a 60 arc seconds square constellation to measure for atmospheric distortions and two deformable mirrors to compensate for it. In this paper, the second devoted to describe the GeMS project, we present the commissioning, overall performance and operational scheme of GeMS. Performance of each sub-system is derived from the commissioning results. The typical image quality, expressed in full with half maximum, Strehl ratios and variations over the field delivered by the system are then described. A discussion of the main contributor to performance limitation is carried-out. Finally, overheads and future system upgrades are described.



قيم البحث

اقرأ أيضاً

The Gemini Multi-conjugate adaptive optics System (GeMS) is a facility instrument for the Gemini-South telescope. It delivers uniform, near-diffraction-limited image quality at near-infrared wavelengths over a 2 arcminute field of view. Together with the Gemini South Adaptive Optics Imager (GSAOI), a near-infrared wide field camera, GeMS/GSAOIs combination of high spatial resolution and a large field of view will make it a premier facility for precision astrometry. Potential astrometric science cases cover a broad range of topics including exo-planets, star formation, stellar evolution, star clusters, nearby galaxies, black holes and neutron stars, and the Galactic center. In this paper, we assess the astrometric performance and limitations of GeMS/GSAOI. In particular, we analyze deep, mono-epoch images, multi-epoch data and distortion calibration. We find that for single-epoch, un-dithered data, an astrometric error below 0.2 mas can be achieved for exposure times exceeding one minute, provided enough stars are available to remove high-order distortions. We show however that such performance is not reproducible for multi-epoch observations, and an additional systematic error of ~0.4 mas is evidenced. This systematic multi-epoch error is the dominant error term in the GeMS/GSAOI astrometric error budget, and it is thought to be due to time-variable distortion induced by gravity flexure.
The Gemini Planet Imager is a high-contrast near-infrared instrument specifically designed to image exoplanets and circumstellar disks over a narrow field of view. We use science data and AO telemetry taken during the first 1.5 yr of the GPI Exoplane t Survey to quantify the performance of the AO system. In a typical 60 sec H-band exposure, GPI achieves a 5$sigma$ raw contrast of 10$^{-4}$ at 0.4; typical final 5$sigma$ contrasts for full 1 hr sequences are more than 10 times better than raw contrasts. We find that contrast is limited by bandwidth wavefront error over much of the PSF. Preliminary exploratory factor analysis can explain 60-70% of the variance in raw contrasts with combinations of seeing and wavefront error metrics. We also examine the effect of higher loop gains on contrast by comparing wavefront error maps reconstructed from AO telemetry to concurrent IFS images. These results point to several ways that GPI performance could be improved in software or hardware.
We overview the current status of photometric analyses of images collected with Multi Conjugate Adaptive Optics (MCAO) at 8-10m class telescopes that operated, or are operating, on sky. Particular attention will be payed to resolved stellar populatio n studies. Stars in crowded stellar systems, such as globular clusters or in nearby galaxies, are ideal test particles to test AO performance. We will focus the discussion on photometric precision and accuracy reached nowadays. We briefly describe our project on stellar photometry and astrometry of Galactic globular clusters using images taken with GeMS at the Gemini South telescope. We also present the photometry performed with DAOPHOT suite of programs into the crowded regions of these globulars reaching very faint limiting magnitudes Ks ~21.5 mag on moderately large fields of view (~1.5 arcmin squared). We highlight the need for new algorithms to improve the modeling of the complex variation of the Point Spread Function across the field of view. Finally, we outline the role that large samples of stellar standards plays in providing a detailed description of the MCAO performance and in precise and accurate colour{magnitude diagrams.
MAORY is the adaptive optics module for ELT providing two gravity invariant ports with the same optical quality for two different client instruments. It enable high angular resolution observations in the near infrared over a large field of view (~1 a rcmin2 ) by real time compensation of the wavefront distortions due to atmospheric turbulence. Wavefront sensing is performed by laser and natural guide stars while the wavefront sensor compensation is performed by an adaptive deformable mirror in MAORY which works together with the telescopes adaptive and tip tilt mirrors M4 and M5 respectively.
136 - Alastair Basden 2015
The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multi-conjugate adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte-Ca rlo adaptive optics simulation tool, DASP. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, number of deformable mirrors, mirror conjugation and actuator pitch. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost. We conclude that a 6 laser guide star system using 3 DMs seems to be a sweet spot for performance and cost compromise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا