ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for a New Resonance from Polarized Neutron-Proton Scattering

109   0   0.0 ( 0 )
 نشر من قبل Heinz A. Clement
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Exclusive and kinematically complete high-statistics measurements of quasifree polarized $vec{n}p$ scattering have been performed in the energy region of the narrow resonance structure $d^*$ with $I(J^P) = 0(3^+)$, $M approx$ 2380 MeV/$c^2$ and $Gamma approx$ 70 MeV observed recently in the double-pionic fusion channels $pn to dpi^0pi^0$ and $pn to dpi^+pi^-$. The experiment was carried out with the WASA detector setup at COSY having a polarized deuteron beam impinged on the hydrogen pellet target and utilizing the quasifree process $vec{d}p to np + p_{spectator}$. That way the $np$ analyzing power $A_y$ was measured over a large angular range. The obtained $A_y$ angular distributions deviate systematically from the current SAID SP07 NN partial-wave solution. Incorporating the new $A_y$ data into the SAID analysis produces a pole in the $^3D_3 - ^3G_3$ waves as expected from the $d^*$ resonance hypothesis.



قيم البحث

اقرأ أيضاً

The present paper reports high-accuracy cross-section data for the 2H(n,nnp) reaction in the neutron-proton (np) and neutron-neutron (nn) final-state-interaction (FSI) regions at an incident mean neutron energy of 13.0 MeV. These data were analyzed w ith rigorous three-nucleon calculations to determine the 1S0 np and nn scattering lengths, a_np and a_nn. Our results are a_nn = -18.7 +/- 0.6 fm and a_np = -23.5 +/- 0.8 fm. Since our value for a_np obtained from neutron-deuteron (nd) breakup agrees with that from free np scattering, we conclude that our investigation of the nn FSI done simultaneously and under identical conditions gives the correct value for a_nn. Our value for a_nn is in agreement with that obtained in pion-deuteron capture measurements but disagrees with values obtained from earlier nd breakup studies.
New data on quasifree polarized neutron-proton scattering, in the region of the recently observed $d^*$ resonance structure, have been obtained by exclusive and kinematically complete high-statistics measurements with WASA at COSY. This paper details the determination of the beam polarization, checks of the quasifree character of the scattering process, on all obtained $A_y$ angular distributions and on the new partial-wave analysis, which includes the new data producing a resonance pole in the $^3D_3$-$^3G_3$ coupled partial waves at ($2380pm10 - i40pm5$) MeV -- in accordance with the $d^*$ dibaryon resonance hypothesis. The effect of the new partial-wave solution on the description of total and differential cross section data as well as specific combinations of spin-correlation and spin-transfer observables available from COSY-ANKE measurements at $T_d$ = 2.27 GeV is discussed.
Vector analyzing power for the proton-6He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target working at low magnetic field of 0.09 T. The results are found to be incompatibl e with a t-matrix folding model prediction. Comparisons of the data with g-matrix folding analyses clearly show that the vector analyzing power is sensitive to the nuclear structure model used in the reaction analysis. The alpha-core distribution in 6He is suggested to be a possible key to understand the nuclear structure sensitivity.
The general phenomenon of shell structure in atomic nuclei has been understood since the pioneering work of Goeppert-Mayer, Haxel, Jensen and Suess.They realized that the experimental evidence for nuclear magic numbers could be explained by introduci ng a strong spin-orbit interaction in the nuclear shell model potential. However, our detailed knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers ($N = Z$), the unique nature of the atomic nucleus as an object composed of two distinct types of fermions can be expressed as enhanced correlations arising between neutrons and protons occupying orbitals with the same quantum numbers. Such correlations have been predicted to favor a new type of nuclear superfluidity; isoscalar neutron-proton pairing, in addition to normal isovector pairing (see Fig. 1). Despite many experimental efforts these predictions have not been confirmed. Here, we report on the first observation of excited states in $N = Z = 46$ nucleus $^{92}$Pd. Gamma rays emitted following the $^{58}$Ni($^{36}$Ar,2$n$)$^{92}$Pd fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution {gamma}-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction. We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling) in the ground and low-lying excited states of the heaviest N = Z nuclei. The strong isoscalar neutron- proton correlations in these $N = Z$ nuclei are predicted to have a considerable impact on their level structures, and to influence the dynamics of the stellar rapid proton capture nucleosynthesis process.
A novel test of time-reversal invariance in proton-deuteron scattering is planned as an internal target transmission experiment at the cooler synchrotron COSY. The P-even, T-odd observable is the polarization correlation $A_{y,xz}$ of the total cross section measured using a polarized internal proton beam (polarization $p_y$) and an internal polarized deuterium target (tensor polarization $p_{xz}$). Measuring this observable is a true null test of time reversal invariance and therefore allows to reach a high accuracy. Sufficient luminosity can be obtained using a window-less storage cell placed on the axis of the proton beam. Tensor polarized atoms are produced in an atomic beam source based on Stern-Gerlach separation in permanent sextupole magnets and adiabatic high frequency transitions. The total cross section correlation is measured by monitoring the beam transmission in the COSY storage ring mode of operation. The proton beam momentum will be in the range 2-3 GeV/c. This momentum is ideally suited to test possible short range contributions, i.e. natural parity charged $rho$-type and unnatural parity $a_1$-type meson exchange contributions. The feasibility of the experiment, systematic errors and the expected accuracy are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا