ﻻ يوجد ملخص باللغة العربية
We prove existence of wide types in a continuous theory expanding a Banach space, and density of minimal wide types among stable types in such a theory. We show that every minimal wide stable type is generically isometric to an l_2 space. We conclude with a proof of the following formulation of Hensons Conjecture: every model of an uncountably categorical theory expanding a Banach space is prime over a spreading model, isometric to the standard basis of a Hilbert space.
We develop the theory of generically stable types, independence relation based on nonforking and stable weight in the context of dependent (NIP) theories.
A Polish space is not always homeomorphic to a computably presented Polish space. In this article, we examine degrees of non-computability of presenting homeomorphic copies of Polish spaces. We show that there exists a $0$-computable low$_3$ Polish s
We propose and analyse a minimal-residual method in discrete dual norms for approximating the solution of the advection-reaction equation in a weak Banach-space setting. The weak formulation allows for the direct approximation of solutions in the Leb
We study the stability of John domains in Banach spaces under removal of a countable set of points. In particular, we prove that the class of John domains is stable in the sense that removing a certain type of closed countable set from the domain yie
In this paper we develop a stochastic integration theory for processes with values in a quasi-Banach space. The integrator is a cylindrical Brownian motion. The main results give sufficient conditions for stochastic integrability. They are natural ex