ﻻ يوجد ملخص باللغة العربية
In a first approximation, the Earths interior has an isotropic structure with a spherical symmetry. Over the last decades the geophysical observations have revealed, at different spatial scales, the existence of several perturbations from this basic structure. In this paper we discuss the hemispheric perturbations induced to this basic structure if the inner core is displaced from the center of mass of the Earth. Using numerical simulations of the observed hemispheric asymmetry of the seismic waves traveling through the upper inner core, with faster arrival times and higher attenuation in the Eastern Hemisphere, we estimate that the present position of the inner core is shifted by tens of kilometers from the Earths center eastward in the equatorial plane. If the only forces acting on the inner core were the gravitational forces, then its equilibrium position would be at the Earths center and the estimated displacement would not be possible. We conjecture that, due to interactions with the flow and the magnetic field inside the outer core, the inner core is in a permanent chaotic motion. To support this hypothesis we analyze more than ten different geophysical phenomena consistent with an inner core motion dominated by time scales from hundreds to thousands of years.
It has long been assumed the Earths solid inner core started to grow when molten iron cooled to its melting point. However, the nucleation mechanism, which is a necessary step of crystallization, has not been well understood. Recent studies found it
In a first approximation the Earths interior has an isotropic structure with a spherical symmetry. Over the last decades the geophysical observations have revealed, at different spatial scales, the existence of several perturbations from this basic s
Ensembles of geophysical models improve projection accuracy and express uncertainties. We develop a novel data-driven ensembling strategy for combining geophysical models using Bayesian Neural Networks, which infers spatiotemporally varying model wei
The geoid is the true physical figure of the Earth, a particular equipotential surface of the gravity field of the Earth that accounts for the effect of all subsurface density variations. Its shape approximates best (in the sense of least squares) th
Regional characterization of the continental crust has classically been performed through either geologic mapping, geochemical sampling, or geophysical surveys. Rarely are these techniques fully integrated, due to limits of data coverage, quality, an