ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing the Best Cosmic Telescopes with the Millennium Simulations

120   0   0.0 ( 0 )
 نشر من قبل Decker French
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Certain configurations of massive structures projected along the line of sight maximize the number of detections of gravitationally lensed $zsim10$ galaxies. We characterize such lines of sight with the etendue $sigma_mu$, the area in the source plane magnified over some threshold $mu$. We use the Millennium I and Millennium XXL cosmological simulations to determine the frequency of high $sigma_mu$ beams on the sky, their properties, and efficient selection criteria. We define the best beams as having $sigma_{mu>3} >2000$ arcsec$^2$, for a $zsim10$ source plane, and predict $477 pm 21$ such beams on the sky. The total mass in the beam and $sigma_{mu>3}$ are strongly correlated. After controlling for total mass, we find a significant residual correlation between $sigma_{mu>3}$ and the number of cluster-scale halos ($>10^{14} M_odot h^{-1}$) in the beam. Beams with $sigma_{mu>3} >2000$ arcsec$^2$, which should be best at lensing $zsim10$ galaxies, are ten times more likely to contain multiple cluster-scale halos than a single cluster-scale halo. Beams containing an Abell 1689-like massive cluster halo often have additional structures along the line of sight, including at least one additional cluster-scale ($M_{200}>10^{14}M_odot h^{-1}$) halo 28% of the time. Selecting beams with multiple, massive structures will lead to enhanced detection of the most distant and intrinsically faint galaxies.


قيم البحث

اقرأ أيضاً

We present the Millennium-II Simulation (MS-II), a very large N-body simulation of dark matter evolution in the concordance LCDM cosmology. The MS-II assumes the same cosmological parameters and uses the same particle number and output data structure as the original Millennium Simulation (MS), but was carried out in a periodic cube one-fifth the size (100 Mpc/h) with 5 times better spatial resolution (a Plummer equivalent softening of 1.0 kpc/h) and with 125 times better mass resolution (a particle mass of 6.9 times 10^6 Msun/h). By comparing results at MS and MS-II resolution, we demonstrate excellent convergence in dark matter statistics such as the halo mass function, the subhalo abundance distribution, the mass dependence of halo formation times, the linear and nonlinear autocorrelations and power spectra, and halo assembly bias. Together, the two simulations provide precise results for such statistics over an unprecedented range of scales, from halos similar to those hosting Local Group dwarf spheroidal galaxies to halos corresponding to the richest galaxy clusters. The Milky Way halos of the Aquarius Project were selected from a lower resolution version of the MS-II and were then resimulated at much higher resolution. As a result, they are present in the MS-II along with thousands of other similar mass halos. A comparison of their assembly histories in the MS-II and in resimulations of 1000 times better resolution shows detailed agreement over a factor of 100 in mass growth. We publicly release halo catalogs and assembly trees for the MS-II in the same format within the same archive as those already released for the MS.
105 - Scott T. Kay 2011
We have exploited the large-volume Millennium Gas cosmological N-body hydrodynamics simulations to study the SZ cluster population at low and high redshift, for three models with varying gas physics. We confirm previous results using smaller samples that the intrinsic (spherical) Y_{500}-M_{500} relation has very little scatter (sigma_{log_{10}Y}~0.04), is insensitive to cluster gas physics and evolves to redshift one in accord with self-similar expectations. Our pre-heating and feedback models predict scaling relations that are in excellent agreement with the recent analysis from combined Planck and XMM-Newton data by the Planck Collaboration. This agreement is largely preserved when r_{500} and M_{500} are derived using the hydrostatic mass proxy, Y_{X,500}, albeit with significantly reduced scatter (sigma_{log_{10}Y}~0.02), a result that is due to the tight correlation between Y_{500} and Y_{X,500}. Interestingly, this assumption also hides any bias in the relation due to dynamical activity. We also assess the importance of projection effects from large-scale structure along the line-of-sight, by extracting cluster Y_{500} values from fifty simulated 5x5 square degree sky maps. Once the (model-dependent) mean signal is subtracted from the maps we find that the integrated SZ signal is unbiased with respect to the underlying clusters, although the scatter in the (cylindrical) Y_{500}-M_{500} relation increases in the pre-heating case, where a significant amount of energy was injected into the intergalactic medium at high redshift. Finally, we study the hot gas pressure profiles to investigate the origin of the SZ signal and find that the largest contribution comes from radii close to r_{500} in all cases. The profiles themselves are well described by generalised Navarro, Frenk & White profiles but there is significant cluster-to-cluster scatter.
We use the Delaunay Tessellation Field Estimator (DTFE) to study the one-point density distribution functions of the Millennium (MS) and Millennium-II (MS-II) simulations. The DTFE technique is based directly on the particle positions, without requir ing any type of smoothing or analysis grid, thereby providing high sensitivity to all non-linear structures resolved by the simulations. In order to identify the detailed origin of the shape of the one-point density probability distribution function (PDF), we decompose the simulation particles according to the mass of their host FoF halos, and examine the contributions of different halo mass ranges to the global density PDF. We model the one-point distribution of the FoF halos in each halo mass bin with a set of Monte Carlo realizations of idealized NFW dark matter halos, finding that this reproduces the measurements from the N-body simulations reasonably well, except for a small excess present in simulation results. This excess increases with increasing halo mass. We show that its origin lies in substructure, which becomes progressively more abundant and better resolved in more massive dark matter halos. We demonstrate that the high density tail of the one-point distribution function in less massive halos is severely affected by the gravitational softening length and the mass resolution. In particular, we find these two parameters to be more important for an accurate measurement of the density PDF than the simulated volume. Combining our results from individual halo mass bins we find that the part of the one-point density PDF originating from collapsed halos can nevertheless be quite well described by a simple superposition of a set of NFW halos with the expected cosmological abundance over the resolved mass range. The transition region to the low-density unbound material is however not well captured by such an analytic halo model.
There have been a number of studies dedicated to identification of fossil galaxy groups, arguably groups with a relatively old formation epoch. Most of such studies identify fossil groups, primarily based on a large luminosity gap, which is the magni tude gap between the two most luminous galaxies in the group. Studies of these types of groups in the millennium cosmological simulations show that, although they have accumulated a significant fraction of their mass, relatively earlier than groups with a small luminosity gap, this parameter alone is not highly efficient in fully discriminating between the old and young galaxy groups, a label assigned based on halo mass accumulation history. We study galaxies drawn from the semi-analytic models of Guo et al. (2011), based on the Millennium Simulation. We establish a set of four observationally measurable parameters which can be used in combination, to identify a subset of galaxy groups which are old, with a very high probability. We thus argue that a sample of fossil groups selected based on luminosity gap will result in a contaminated sample of old galaxy groups. By adding constraints on the luminosity of the brightest galaxy, and its offset from the group luminosity centroid, we can considerably improve the age-dating.
In this paper we investigate the strong lensing statistics in galaxy clusters. We extract dark matter haloes from the Millennium-XXL simulation, compute their Einstein radius distribution, and find a very good agreement with Monte Carlo predictions p roduced with the MOKA code. The distribution of the Einstein radii is well described by a log-normal distribution, with a considerable fraction of the largest systems boosted by different projection effects. We discuss the importance of substructures and triaxiality in shaping the size of the critical lines for cluster size haloes. We then model and interpret the different deviations, accounting for the presence of a Bright Central Galaxy (BCG) and two different stellar mass density profiles. We present scaling relations between weak lensing quantities and the size of the Einstein radii. Finally we discuss how sensible is the distribution of the Einstein radii on the cosmological parameters {Omega}_M-{sigma}_8 finding that cosmologies with higher {Omega}_M and {sigma}_8 possess a large sample of strong lensing clusters. The Einstein radius distribution may help distinguish Planck13 and WMAP7 cosmology at 3{sigma}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا