ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting the Impact of Atmospheric Dispersion and Differential Refraction on Widefield Multiobject Spectroscopic Observations. From VLT/VIMOS to Next Generation Instruments

62   0   0.0 ( 0 )
 نشر من قبل Ruben Sanchez-Janssen
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) Atmospheric dispersion and field differential refraction impose severe constraints on widefield MOS observations. Flux reduction and spectral distortions must be minimised by a careful planning of the observations -- which is especially true for instruments that use slits instead of fibres. This is the case of VIMOS at the VLT, where MOS observations have been restricted, since the start of operations, to a narrow two-hour range from the meridian to minimise slit losses. We revisit in detail the impact of atmospheric effects on the quality of VIMOS-MOS spectra. We model slit losses across the entire VIMOS FOV as a function of target declination. We explore two different slit orientations at the meridian: along the parallactic angle (North-South), and perpendicular to it (East-West). We show that, for fields culminating at zenith distances larger than 20 deg, slit losses are minimised with slits oriented along the parallactic angle at the meridian. The two-hour angle rule holds for these observations using N-S orientations. Conversely, for fields with zenith angles smaller than 20 deg at culmination, losses are minimised with slits oriented perpendicular to the parallactic angle at the meridian. MOS observations can be effectively extended to plus/minus three hours from the meridian in these cases. In general, night-long observations of a single field will benefit from using the E-W orientation. All-sky or service mode observations, however, require a more elaborate planning that depends on the target declination, and the hour angle of the observations. We establish general rules for the alignment of slits in MOS observations that will increase target observability, enhance the efficiency of operations, and speed up the completion of programmes -- a particularly relevant aspect for the forthcoming spectroscopic public surveys with VIMOS.

قيم البحث

اقرأ أيضاً

Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the Southern Hemisphere designed specifically to explore the low-frequency astronomica l sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21 cm emission from the epoch of reionisation in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.
Measuring the orbits of directly-imaged exoplanets requires precise astrometry at the milliarcsec level over long periods of time due to their wide separation to the stars ($gtrsim$10 au) and long orbital period ($gtrsim$20 yr). To reach this challen ging goal, a specific strategy was implemented for the instrument Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), the first dedicated exoplanet imaging instrument at the Very Large Telescope of the European Southern Observatory (ESO). A key part of this strategy relies on the astrometric stability of the instrument over time. We monitored for five years the evolution of the optical distortion, pixel scale, and orientation to the True North of SPHERE images using the near-infrared instrument IRDIS. We show that the instrument calibration achieves a positional stability of $sim$1 mas over 2$$ field of views. We also discuss the SPHERE astrometric strategy, issues encountered in the course of the on-sky operations, and lessons learned for the next generation of exoplanet imaging instruments on the Extremely Large Telescope being built by ESO.
93 - Henry G. Roe 2002
Many adaptive optics systems operate by measuring the distortion of the wavefront in one wavelength range and performing the scientific observations in a second, different wavelength range. One common technique is to measure wavefront distortions at wavelengths <~1 micron while operating the science instrument at wavelengths >~1 micron. The index of refraction of air decreases sharply from shorter visible wavelengths to near-infrared wavelengths. Therefore, because the adaptive optics system is measuring the wavefront distortion in one wavelength range and the science observations are performed at a different wavelength range, residual image motion occurs and the maximum exposure time before smearing of the image can be significantly limited. We demonstrate the importance of atmospheric differential refraction, present calculations to predict the effect of atmospheric differential refraction, and finally discuss the implications of atmospheric differential refraction for several current and proposed observatories.
We present a technique-led review of the progression of precise radio astrometry, from the first demonstrations, half a century ago, until to date and into the future. We cover the developments that have been fundamental to allow high accuracy and pr ecision astrometry to be regularly achieved. We review the opportunities provided by the next-generation of instruments coming online, which are primarily: SKA, ngVLA and pathfinders, along with EHT and other (sub)mm-wavelength arrays, Space-VLBI, Geodetic arrays and optical astrometry from GAIA. From the historical development we predict the future potential astrometric performance, and therefore the instrumental requirements that must be provided to deliver these. The next-generation of methods will allow ultra-precise astrometry to be performed at a much wider range of frequencies (hundreds of MHz to hundreds of GHz). One of the key potentials is that astrometry will become generally applicable, and therefore unbiased large surveys can be performed. The next-generation methods are fundamental in allowing this. We review the small but growing number of major astrometric surveys in the radio, to highlight the scientific impact that such projects can provide. Based on these perspectives, the future of radio astrometry is bright. We foresee a revolution coming from: ultra-high precision radio astrometry, large surveys of many objects, improved sky coverage and at new frequency bands other than those available today. These will enable the addressing of a host of innovative open scientific questions in astrophysics.
Differential atmospheric dispersion is a wavelength-dependent effect introduced by Earths atmosphere that affects astronomical observations performed using ground-based telescopes. It is important, when observing at a zenithal angle different from ze ro, to use an Atmospheric Dispersion Corrector (ADC) to compensate this atmospheric dispersion. The design of an ADC is based on atmospheric models that, to the best of our knowledge, were never tested against on-sky measurements. We present an extensive models analysis in the wavelength range of 315-665 nm. The method we used was previously described in the paper I of this series. It is based on the use of cross-dispersion spectrographs to determine the position of the centroid of the spatial profile at each wavelength of each spectral order. The accuracy of the method is 18 mas. At this level, we are able to compare and characterize the different atmospheric dispersion models of interest. For better future ADC designs, we recommend to avoid the Zemax model, and in particular in the blue range of the spectra, when expecting residuals at the level of few tens of milli-arcseconds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا