ﻻ يوجد ملخص باللغة العربية
The measurement of properties of exotic nuclei, essential for fundamental nuclear physics, now confronts a formidable challenge for contemporary radiofrequency accelerator technology. A promising option can be found in the combination of state-of-the-art high-intensity short pulse laser system and nuclear measurement techniques. We propose a novel Laser-driven Exotic Nuclei extraction-acceleration method (LENex): a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly-charged nuclear reaction products. Here a proof-of-principle experiment of LENex is presented: a few hundred-terawatt laser focused onto an aluminum foil, with a small amount of iron simulating nuclear reaction products, extracts almost fully stripped iron nuclei and accelerate them up to 0.9 GeV. Our experiments and numerical simulations show that short-lived, heavy exotic nuclei, with a much larger charge-to-mass ratio than in conventional technology, can be obtained in the form of an energetic, low-emittance, high-current beam.
A new laser-wire is being installed in the extraction line of the ATF at KEK. This device aims at demonstrating that laser-wires can be used to measure micrometre scale beam size.
We have experimentally demonstrated the first non-intrusive 1-GeV proton beam extraction for the generation of muons with a temporal structure optimized for Muon Spin Relaxation/Rotation/Resonance (MuSR) applications. The proton pulses are extracted
We present the recent results of a research project aimed at constructing a robust wave extraction technique for numerical relativity. Our procedure makes use of Weyl scalars to achieve wave extraction. It is well known that, with a correct choice of
We present methods and preliminary observations of two pulse Direct Laser Acceleration in a Laser-Driven Plasma Accelerator. This acceleration mechanism uses a second co-propagating laser pulse to overlap and further accelerate electrons in a wakefie
The construction of a novel user facility employing laser-driven plasma acceleration with superior beam quality will require an industrial grade, high repetition rate petawatt laser driver which is beyond existing technology. However, with the ongoin