ﻻ يوجد ملخص باللغة العربية
We analyze the effect of a strong Zeeman field on the spectrum of collective excitations of monolayer transition metal dichalcogenides. The combination of the Dresselhaus type spin orbit coupling and an external Zeeman field result in the lifting of the valley degeneracy in the valence band of these crystals. We show that this lifting of the valley degeneracy manifests in the appearance of an additional plasmon mode with linear in wavenumber dispersion along with the standard square root in wavenumber mode. Despite this novel mode being subject to the Landau damping, it corresponds to a well defined quasiparticle peak in the spectral function of the electron gas.
We study the electronic structure of heterostructures formed by a graphene nanoribbon (GNR) and a transition metal dichalcogenides (TMD) monolayer using first-principles. We consider both semiconducting TMDs and metallic TMDs, and different stacking
Excitons dominate the optical properties of monolayer transition metal dichalcogenides (TMDs). Besides optically accessible bright exciton states, TMDs exhibit also a multitude of optically forbidden dark excitons. Here, we show that efficient excito
The dependence of the excitonic photoluminescence (PL) spectrum of monolayer transition metal dichalcogenides (TMDs) on the tilt angle of an applied magnetic field is studied. Starting from a four-band Hamiltonian we construct a theory which quantita
Due to the Coulomb interaction exciton eignestates in monolayer transitional metal dichalcogenides are coherent superposition of two valleys. The exciton band which couples to the transverse electric mode of light has parabolic dispersion for the cen
This work investigates the feasibility of electrical valley filtering for holes in transition metal dichalcogenides. We look specifically into the scheme that utilizes a potential barrier to produce valley-dependent tunneling rates, and perform the s