ﻻ يوجد ملخص باللغة العربية
We propose employing the extension of the Lehmann-Maehly-Goerisch method developed by Zimmermann and Mertins, as a highly effective tool for the pollution-free finite element computation of the eigenfrequencies of the resonant cavity problem on a bounded region. This method gives complementary bounds for the eigenfrequencies which are adjacent to a given real parameter. We present a concrete numerical scheme which provides certified enclosures in a suitable asymptotic regime. We illustrate the applicability of this scheme by means of some numerical experiments on benchmark data using Lagrange elements and unstructured meshes.
A certified strategy for determining sharp intervals of enclosure for the eigenvalues of matrix differential operators with singular coefficients is examined. The strategy relies on computing the second order spectrum relative to subspaces of continu
This paper is concerned with methods for numerical computation of eigenvalue enclosures. We examine in close detail the equivalence between an extension of the Lehmann-Maehly-Goerisch method developed a few years ago by Zimmermann and Mertins, and a
A mixed finite element method combining an iso-parametric $Q_2$-$P_1$ element and an iso-parametric $P_2^+$-$P_1$ element is developed for the computation of multiple cavities in incompressible nonlinear elasticity. The method is analytically proved
Unfitted finite element techniques are valuable tools in different applications where the generation of body-fitted meshes is difficult. However, these techniques are prone to severe ill conditioning problems that obstruct the efficient use of iterat
We put forward and analyze an explicit finite difference scheme for the Camassa-Holm shallow water equation that can handle general $H^1$ initial data and thus peakon-antipeakon interactions. Assuming a specified condition restricting the time step i