ﻻ يوجد ملخص باللغة العربية
We show that a closed quantum system driven through a quantum critical point with two rates $omega_1$ (which controls its proximity to the quantum critical point) and $omega_2$ (which controls the dispersion of the low-energy quasiparticles at the critical point) exhibits novel scaling laws for defect density $n$ and residual energy $Q$. We demonstrate suppression of both $n$ and $Q$ with increasing $omega_2$ leading to an alternate route to achieving near-adiabaticity in a finite time for a quantum system during its passage through a critical point. We provide an exact solution for such dynamics with linear drive protocols applied to a class of integrable models, supplement this solution with scaling arguments applicable to generic many-body Hamiltonians, and discuss specific models and experimental systems where our theory may be tested.
We show that the defect density $n$, for a slow non-linear power-law quench with a rate $tau^{-1}$ and an exponent $alpha>0$, which takes the system through a critical point characterized by correlation length and dynamical critical exponents $ u$ an
We study defect production in a quantum system subjected to a nonlinear power law quench which takes it either through a quantum critical or multicritical point or along a quantum critical line. We elaborate on our earlier work [D. Sen, K. Sengupta,
Recent advances in experimental techniques allow one to create a quantum point contact between two Fermi superfluids in cold atomic gases with a tunable transmission coefficient. In this Letter we propose that three distinct behaviors of charge trans
In this work we study the particle conductance of a strongly interacting Fermi gas through a quantum point contact. With an atom-molecule two-channel model, we compute the contribution to particle conductance by both the fermionic atoms and the boson
We study the thermodynamics of the relativistic quantum O($N$) model in two space dimensions. In the vicinity of the zero-temperature quantum critical point (QCP), the pressure can be written in the scaling form $P(T)=P(0)+N(T^3/c^2)calF_N(Delta/T)$