ترغب بنشر مسار تعليمي؟ اضغط هنا

Baryogenesis from the Gauge-mediation type Q ball and the New type of Q ball as dark matter

224   0   0.0 ( 0 )
 نشر من قبل Shinta Kasuya
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate that the two types of the Q balls explain the baryon asymmetry and the dark matter of the universe in the gauge-mediated supersymmetry breaking. The gauge-mediation type Q balls of one flat direction produce baryon asymmetry, while the new type Q balls of another flat direction become the dark matter. We show that the dark matter new type Q balls are free from the neutron star constraint. n=5 gauge mediation type and n=6 new type Q balls are displayed as an example, where the potential is lifted by the superpotential Phi^n. These dark matter Q balls may be detected by future observations, such as in advanced IceCube-like observations.



قيم البحث

اقرأ أيضاً

We investigate the Q-ball decay in the gauge-mediated SUSY breaking. Q balls decay mainly into nucleons, and partially into gravitinos, while they are kinematically forbidden to decay into sparticles which would be cosmologically harmful. This is ach ieved by the Q-ball charge small enough to be unstable for the decay, and large enough to be protected kinematically from unwanted decay channel. We can then have right amounts of the baryon asymmetry and the dark matter of the universe, evading any astrophysical and cosmological observational constraints such as the big bang nucleosynthesis, which has not been treated properly in the literatures.
We study Q-ball dark matter in gauge-mediated supersymmetry breaking, and seek the possibility of detection in the IceCube experiment. We find that the Q balls would be the dark matter in the parameter region different from that for gravitino dark ma tter. In particular, the Q ball is a good dark matter candidate for low reheating temperature, which may be suitable for the Affleck-Dine baryogenesis and/or nonthermal leptogenesis. Dark matter Q balls are detectable by IceCube-like experiments in the future, which is the peculiar feature compared to the case of gravitino dark matter.
We reinvestigate the scenario that the amount of the baryons and the gravitino dark matter is naturally explained by the decay of the Q balls in the gauge-mediated SUSY breaking. Equipped by the more correct decay rates into gravitinos and baryons re cently derived, we find that the scenario with the direct production of the gravitino dark matter from the Q-ball decay works naturally.
We investigate the Q-ball decay into the axino dark matter in the gauge-mediated supersymmetry breaking. In our scenario, the Q ball decays mainly into nucleons and partially into axinos to account for the baryon asymmetry and the dark matter of the universe simultaneously. The Q ball decays well before the big bang nucleosynthesis so that it is not affected by the decay. The decay into the supersymmetric particles of the minimal supersymmetric standard model is kinematically prohibited until the very end of the decay, and we could safely make their abundances small enough for the successful big bang nucleosynthesis. We show the regions of axino model parameters and the Q-ball parameters which realize this scenario.
We investigate the scenario that one flat direction creates baryon asymmetry of the unverse, while Q balls from another direction can be the dark matter in the gauge-mediated supersymmetry breaking for high-scale inflation. Isocurvature fluctuations are suppressed by the fact that the Affleck-Dine field stays at around the Planck scale during inflation. We find that the dark matter Q balls can be detected in IceCube-like experiments in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا