ترغب بنشر مسار تعليمي؟ اضغط هنا

The Sagittarius Impact on Light and Dark Structure in the Milky Way

124   0   0.0 ( 0 )
 نشر من قبل Chris Purcell
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Chris W. Purcell




اسأل ChatGPT حول البحث

It is increasingly apparent that common merger events play a large role in the evolution of disk galaxies at all cosmic times, from the wet accretion of gas-filled dwarf galaxies during the era of peak star formation, to the collisions between large, dynamically-advanced spiral galaxies and their dry companion satellites, a type of interaction that continues to influence disk structure into the present day. We also live in a large spiral galaxy currently undergoing a series of impacts from an infalling, disrupting dwarf galaxy. As next-generation astrometry proposes to place our understanding of the Milky Way spiral structure on a much firmer footing, we analyze high-resolution numerical models of this disk-satellite interaction in order to assess the dynamical response of our home Galaxy to the Sagittarius dwarf impact, and possible implications for experiments hoping to directly detect dark matter passing through the Earth.



قيم البحث

اقرأ أيضاً

Recent maps of the halo using RR Lyrae from Pan-STARRS1 have clearly depicted the spatial structure of the Sagittarius stream. These maps show the leading and trailing stream apocenters differ in galactocentric radius by a factor of two, and also res olve substructure in the stream at these apocenters. Here we present dynamical models that reproduce these features of the stream in simple Galactic potentials. We find that debris at the apocenters must be dynamically young, in the sense of being stripped off in the last two pericentric passages, while the Sagittarius dwarf is currently experiencing a third passage. The ratio of apocenters is sensitive to both dynamical friction and the outer slope of the Galactic rotation curve. These dependences can be understood with simple regularities connecting the apocentric radii, circular velocities, and orbital period of the progenitor. The effect of dynamical friction on the stream can be constrained using substructure within the leading apocenter. Our ensembles of models are not intended as statistically proper fits to the stream. Nevertheless, out of the range of models we consider, we consistently find the mass within 100 kpc to be $sim 7 times 10^{11} , M_{odot}$, with a nearly flat rotation curve between 50 and 100 kpc. This points to a more extended Galactic halo than assumed in some current models. As in previous work, we find prolate or triaxial halos ease agreement with the track of the leading stream. We display the behavior of our models in various observational spaces and characterize the substructure expected within the stream. In particular, the young trailing stream visible near trailing apocenter should exhibit a tight trend of velocity with distance separate from the older debris, and we suggest that this will serve as an especially useful probe of the outer Galactic potential.
This is a brief rebuttal to arXiv:1502.03821, which claims to provide the first observational proof of dark matter interior to the solar circle. We point out that this result is not new, and can be traced back at least a quarter century.
72 - Ye Xu , Mark Reid , Thomas Dame 2016
The nature of the spiral structure of the Milky Way has long been debated. Only in the last decade have astronomers been able to accurately measure distances to a substantial number of high-mass star-forming regions, the classic tracers of spiral str ucture in galaxies. We report distance measurements at radio wavelengths using the Very Long Baseline Array for eight regions of massive star formation near the Local spiral arm of the Milky Way. Combined with previous measurements, these observations reveal that the Local Arm is larger than previously thought, and both its pitch angle and star formation rate are comparable to those of the Galaxys major spiral arms, such as Sagittarius and Perseus. Toward the constellation Cygnus, sources in the Local Arm extend for a great distance along our line of sight and roughly along the solar orbit. Because of this orientation, these sources cluster both on the sky and in velocity to form the complex and long enigmatic Cygnus X region. We also identify a spur that branches between the Local and Sagittarius spiral arms.
We present mass and mass profile estimates for the Milky Way Galaxy using the Bayesian analysis developed by Eadie et al (2015b) and using globular clusters (GCs) as tracers of the Galactic potential. The dark matter and GCs are assumed to follow dif ferent spatial distributions; we assume power-law model profiles and use the model distribution functions described in Evans et al. (1997); Deason et al (2011, 2012a). We explore the relationships between assumptions about model parameters and how these assumptions affect mass profile estimates. We also explore how using subsamples of the GC population beyond certain radii affect mass estimates. After exploring the posterior distributions of different parameter assumption scenarios, we conclude that a conservative estimate of the Galaxys mass within 125kpc is $5.22times10^{11} M_{odot}$, with a $50%$ probability region of $(4.79, 5.63) times10^{11} M_{odot}$. Extrapolating out to the virial radius, we obtain a virial mass for the Milky Way of $6.82times10^{11} M_{odot}$ with $50%$ credible region of $(6.06, 7.53) times 10^{11} M_{odot}$ ($r_{vir}=185^{+7}_{-7}$kpc). If we consider only the GCs beyond 10kpc, then the virial mass is $9.02~(5.69, 10.86) times 10^{11} M_{odot}$ ($r_{vir}=198^{+19}_{-24}$kpc). We also arrive at an estimate of the velocity anisotropy parameter $beta$ of the GC population, which is $beta=0.28$ with a $50%$ credible region (0.21, 0.35). Interestingly, the mass estimates are sensitive to both the dark matter halo potential and visible matter tracer parameters, but are not very sensitive to the anisotropy parameter.
This paper presents an alternative scenario to explain the observed properties of the Milky Way dwarf Spheroidals (MW dSphs). We show that instead of resulting from large amounts of dark matter (DM), the large velocity dispersions observed along thei r lines of sight can be entirely accounted for by dynamical heating of DM-free systems resulting from MW tidal shocks. Such a regime is expected if the progenitors of the MW dwarfs are infalling gas-dominated galaxies. In this case, gas lost through ram-pressure leads to a strong decrease of self-gravity, a phase during which stars can radially expand, while leaving a gas-free dSph in which tidal shocks can easily develop. The DM content of dSphs is widely derived from the measurement of the dSphs self-gravity acceleration projected along the line of sight. We show that the latter strongly anti-correlates with the dSph distance from the MW, and that it is matched in amplitude by the acceleration caused by MW tidal shocks on DM-free dSphs. If correct, this implies that the MW dSphs would have negligible DM content, putting in question, e.g., their use as targets for DM direct searches, or our understanding of the Local Group mass assembly history. Most of the progenitors of the MW dSphs are likely extremely tiny dIrrs, and deeper observations and more accurate modeling are necessary to infer their properties as well as to derive star formation histories of the faintest dSphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا