ترغب بنشر مسار تعليمي؟ اضغط هنا

The applicability of FIR fine-structure lines as Star Formation Rate tracers over wide ranges of metallicities and galaxy types

488   0   0.0 ( 0 )
 نشر من قبل Ilse De Looze
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the applicability of far-infrared fine-structure lines [CII] 158 micron, [OI] 63 micron and [OIII] 88 micron to reliably trace the star formation rate (SFR) in a sample of low-metallicity dwarf galaxies from the Herschel Dwarf Galaxy Survey and compare with a broad sample of galaxies of various types and metallicities in the literature. We study the trends and scatter in the relation between the SFR (as traced by GALEX FUV and MIPS 24 micron) and far-infrared line emission, on spatially resolved and global galaxy scales, in dwarf galaxies. We assemble far-infrared line measurements from the literature and infer whether the far-infrared lines can probe the SFR (as traced by the total-infrared luminosity) in a variety of galaxy populations. In metal-poor dwarfs, the [OI] and [OIII] lines show the strongest correlation with the SFR with an uncertainty on the SFR estimates better than a factor of 2, while the link between [CII] emission and the SFR is more dispersed (uncertainty factor of 2.6). The increased scatter in the SFR-L([CII]) relation towards low metal abundances, warm dust temperatures, large filling factors of diffuse, highly ionized gas suggests that other cooling lines start to dominate depending on the density and ionization state of the gas. For the literature sample, we evaluate the correlations for a number of different galaxy populations. The [CII] and [OI] lines are considered to be reliable SFR tracers in starburst galaxies, recovering the star formation activity within an uncertainty of factor 2. [Abridged]



قيم البحث

اقرأ أيضاً

Massive stars can be found in wide (hundreds to thousands AU) binaries with other massive stars. We use $N$-body simulations to show that any bound cluster should always have approximately one massive wide binary: one will probably form if none are p resent initially; and probably only one will survive if more than one are present initially. Therefore any region that contains many massive wide binaries must have been composed of many individual subregions. Observations of Cyg OB2 show that the massive wide binary fraction is at least a half (38/74) which suggests that Cyg OB2 had at least 30 distinct massive star formation sites. This is further evidence that Cyg OB2 has always been a large, low-density association. That Cyg OB2 has a normal high-mass IMF for its total mass suggests that however massive stars form they randomly sample the IMF (as the massive stars did not know about each other).
Globular clusters (GCs) are some of the most visible tracers of the merging and accretion history of galaxy halos. Metal-poor GCs, in particular, are thought to arrive in massive galaxies largely through dry, minor merging events, but it is rare to s ee a direct connection between GCs and visible stellar streams. NGC 474 is a post-merger early-type galaxy with dramatic fine structures made of concentric shells and radial streams that have been more clearly revealed by deep imaging. We present a study of GCs in NGC 474 to better establish the relationship between merger-induced fine structure and the GC system. We find that many GCs are superimposed on visible streams and shells, and about 35% of GCs outside $3R_{rm e,galaxy}$ are located in regions of fine structure. The spatial correlation between the GCs and fine structure is significant at the 99.9% level, showing that this correlation is not coincidental. The colors of the GCs on the fine structures are mostly blue, and we also find an intermediate-color population that is dominant in the central region, and which will likely passively evolve to have colors consistent with a traditional metal-rich GC population. The association of the blue GCs with fine structures is direct confirmation that many metal-poor GCs are accreted onto massive galaxy halos through merging events, and that progenitors of these mergers are sub-L* galaxies.
Background: low-mass stars are the dominant product of the star formation process, and they trace star formation over the full range of environments, from isolated globules to clusters in the central molecular zone. In the past two decades, our under standing of the spatial distribution and properties of young low-mass stars and protostars has been revolutionized by sensitive space-based observations at X-ray and IR wavelengths. By surveying spatial scales from clusters to molecular clouds, these data provide robust measurements of key star formation properties. Goal: with their large numbers and their presence in diverse environments, censuses of low mass stars and protostars can be used to measure the dependence of star formation on environmental properties, such as the density and temperature of the natal gas, strengths of the magnetic and radiation fields, and the density of stars. Here we summarize how such censuses can answer three basic questions: i.) how is the star formation rate influenced by environment, ii.) does the IMF vary with environment, and iii.) how does the environment shape the formation of bound clusters? Answering these questions is an important step toward understanding star and cluster formation across the extreme range of environments found in the Universe. Requirements: sensitivity and angular resolution improvements will allow us to study the full range of environments found in the Milky Way. High spatial dynamic range (< 1arcsec to > 1degree scales) imaging with space-based telescopes at X-ray, mid-IR, and far-IR and ground-based facilities at near-IR and sub-mm wavelengths are needed to identify and characterize young stars.
152 - Nicola Da Rio 2014
The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues on the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing t he latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC, and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, consistent with a higher degree of dynamical processing. At larger distances the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the ISM density, estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor $sim 1.8$ to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that, at the half-mass radius, 90% of the stellar population formed within $sim 5$-$8$ free-fall times ($t_{rm ff}$). This implies a star formation efficiency per $t_{rm ff}$ of $epsilon_{rm ff}sim 0.04$-$0.07$, i.e., relatively slow and inefficient star formation rates during star cluster formation.
237 - Daniel T. Haydon 2018
We recently presented a new statistical method to constrain the physics of star formation and feedback on the cloud scale by reconstructing the underlying evolutionary timeline. However, by itself this new method only recovers the relative durations of different evolutionary phases. To enable observational applications, it therefore requires knowledge of an absolute reference time-scale to convert relative time-scales into absolute values. The logical choice for this reference time-scale is the duration over which the star formation rate (SFR) tracer is visible because it can be characterised using stellar population synthesis (SPS) models. In this paper, we calibrate this reference time-scale using synthetic emission maps of several SFR tracers, generated by combining the output from a hydrodynamical disc galaxy simulation with the SPS model SLUG2. We apply our statistical method to obtain self-consistent measurements of each tracers reference time-scale. These include H${alpha}$ and 12 ultraviolet (UV) filters (from GALEX, Swift, and HST), which cover a wavelength range 150-350 nm. At solar metallicity, the measured reference time-scales of H${alpha}$ are ${4.32^{+0.09}_{-0.23}}$ Myr with continuum subtraction, and 6-16 Myr without, where the time-scale increases with filter width. For the UV filters we find 17-33 Myr, nearly monotonically increasing with wavelength. The characteristic time-scale decreases towards higher metallicities, as well as to lower star formation rate surface densities, owing to stellar initial mass function sampling effects. We provide fitting functions for the reference time-scale as a function of metallicity, filter width, or wavelength, to enable observational applications of our statistical method across a wide variety of galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا