ترغب بنشر مسار تعليمي؟ اضغط هنا

Bajc-Melfo Vacua enable YUMGUTs

153   0   0.0 ( 0 )
 نشر من قبل Charanjit S. Aulakh
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bajc-Melfo(textbf{BM}) two field ($S,phi$) superpotentials define metastable F-term supersymmetry breaking vacua suitable as hidden sectors for calculable and realistic family and Grand Unification unification models. The undetermined vev $<S_s>$ of the Polonyi field that breaks Supersymmetry can be fixed either by coupling to N=1 Supergravity or by radiative corrections. textbf{BM} hidden sectors extend to symmetric multiplets $(S,phi)_{ab}$ of a gauged $O(N_g)$ family symmetry, broken at the GUT scale, so that the $O(N_g)$ charged component vevs $<hat S_{ab}>$ are also undetermined before accounting for the $O(N_g)$ D-terms: which fix them by cancellation against D-term contributions from the visible sector. This facilitates Yukawon Ultra Minimal GUTs(YUMGUTs) proposed in [C.S.Aulakh and C.K.Khosa, Phys.Rev.D 90,045008(2014)] by relieving the visible sector from the need to give null D-terms for the family symmetry $ O(N_g)$. We analyze symmetry breaking and and spectra of the hidden sector fields in the Supergravity resolved case when $N_g=1,2,3$. Besides the Polonyi field $S_s$, most of the superfields $hat S_{ab}$ remain light, with fermions getting masses only from loop corrections. Such modes may yield novel dark matter lighter than 100 GeV. Possible Polonyi and moduli problems associated with the the fields $S_{ab}$ call for detailed investigation of loop effects due to the Yukawa and gauge interactions in the hidden sector and of post-inflationary field relaxation dynamics.

قيم البحث

اقرأ أيضاً

The detection of an oscillating pattern in the bispectrum of density perturbations could suggest the existence of a high-energy second minimum in the Higgs potential. If the Higgs field resided in this new minimum during inflation and was brought bac k to the electroweak vacuum by thermal corrections during reheating, the coupling of Standard Model particles to the inflaton would leave its imprint on the bispectrum. We focus on the fermions, whose dispersion relation can be modified by the coupling to the inflaton, leading to an enhanced particle production during inflation even if their mass during inflation is larger than the Hubble scale. This results in a large non-analytic contribution to non-Gaussianities, with an amplitude $f_{rm NL}$ as large as $100$ in the squeezed limit, potentially detectable in future 21-cm surveys. Measuring the contributions from two fermions would allow us to compute the ratio of their masses, and to ascribe the origin of the signal to a new Higgs minimum. Such a discovery would be a tremendous step towards understanding the vacuum instability of the Higgs potential, and could have fascinating implications for anthropic considerations.
63 - Anson Hook , Junwu Huang 2019
We discuss models in which vacua other than our own can be directly observed in the present universe. Models with density-dependent vacuum structure can give rise to `non-lethal-vacua: vacua with lower energy-density than our vacuum, but only in regi ons with finite Standard Model densities. These models provide an explicit example of a bubble which is confined to a finite region of space and produces potentially detectable signatures, unlike standard Coleman tunneling events where bubbles expand at the speed of light and are never directly observable. We study the expansion and contraction of a confined bubble created after a core-collapse supernova, focusing on energy deposition that may be observable in the vicinity of a supernova remnant due to the formation and evolution of a confined bubble.
118 - Gary Shiu , Yoske Sumitomo 2011
We present further no-go theorems for classical de Sitter vacua in Type II string theory, i.e., de Sitter constructions that do not invoke non-perturbative effects or explicit supersymmetry breaking localized sources. By analyzing the stability of th e 4D potential arising from compactification on manfiolds with curvature, fluxes, and orientifold planes, we found that additional ingredients, beyond the minimal ones presented so far, are necessary to avoid the presence of unstable modes. We enumerate the minimal setups for (meta)stable de Sitter vacua to arise in this context.
We present the simplest model for classical transitions in flux vacua. A complex field with a spontaneously broken U(1) symmetry is embedded in $M_2times S_1$. We numerically construct different winding number vacua, the vortices interpolating betwee n them, and simulate the collisions of these vortices. We show that classical transitions are generic at large boosts, independent of whether or not vortices miss each other in the compact $S_1$.
Recently it has been recognized that in compactified string/M-theories that satisfy cosmological constraints, it is possible to derive some robust and generic predictions for particle physics and cosmology with very mild assumptions. When the matter and gauge content below the compactification scale is that of the MSSM, it is possible to make precise predictions. In this case, we predict that there will be a single Standard Model-like Higgs boson with a calculable mass 105 GeV $lesssim M_h lesssim$ 129 GeV depending on tan beta (the ratio of the Higgs vevs in the MSSM). For tan beta > 7, the prediction is : 122 GeV $lesssim M_h lesssim$ 129 GeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا