ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal joint measurement of two observables of a qubit

486   0   0.0 ( 0 )
 نشر من قبل Sixia Yu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heisenbergs uncertainty relations for measurement quantify how well we can jointly measure two complementary observables and have attracted much experimental and theoretical attention recently. Here we provide an exact tradeoff between the worst-case errors in measuring jointly two observables of a qubit, i.e., all the allowed and forbidden pairs of errors, especially asymmetric ones, are exactly pinpointed. For each pair of optimal errors we provide an optimal joint measurement that is realizable without introducing any ancilla and entanglement. Possible experimental implementations are discussed and Toronto experiment [Rozema et al., Phys. Rev. Lett. 109, 100404 (2012)] can be readily adapted to an optimal joint measurement of two orthogonal observables.



قيم البحث

اقرأ أيضاً

138 - Sixia Yu , Naile Liu , Li Li 2008
We present a single inequality as the necessary and sufficient condition for two unsharp observables of a two-level system to be jointly measurable in a single apparatus and construct explicitly the joint observables. A complementarity inequality ari sing from the condition of joint measurement, which generalizes Englerts duality inequality, is derived as the trade-off between the unsharpnesses of two jointly measurable observables.
Wigner and Husimi quasi-distributions, owing to their functional regularity, give the two archetypal and equivalent representations of all observable-parameters in continuous-variable quantum information. Balanced homodyning and heterodyning that cor respond to their associated sampling procedures, on the other hand, fare very differently concerning their state or parameter reconstruction accuracies. We present a general theory of a now-known fact that heterodyning can be tomographically more powerful than balanced homodyning to many interesting classes of single-mode quantum states, and discuss the treatment for two-mode sources.
We present an efficient method to solve the quantum discord of two-qubit X states exactly. A geometric picture is used to clarify whether and when the general POVM measurement is superior to von Neumann measurement. We show that either the von Neuman n measurement or the three-element POVM measurement is optimal, and more interestingly, in the latter case the components of the postmeasurement ensemble are invariant for a class of states.
We consider multi-time correlators for output signals from linear detectors, continuously measuring several qubit observables at the same time. Using the quantum Bayesian formalism, we show that for unital (symmetric) evolution in the absence of phas e backaction, an $N$-time correlator can be expressed as a product of two-time correlators when $N$ is even. For odd $N$, there is a similar factorization, which also includes a single-time average. Theoretical predictions agree well with experimental results for two detectors, which simultaneously measure non-commuting qubit observables.
104 - Srinivas Sridharan 2011
In this article we explore a modification in the problem of controlling the rotation of a two level quantum system from an initial state to a final state in minimum time. Specifically we consider the case where the qubit is being weakly monitored -- albeit with an assumption that both the measurement strength as well as the angular velocity are assumed to be control signals. This modification alters the dynamics significantly and enables the exploitation of the measurement backaction to assist in achieving the control objective. The proposed method yields a significant speedup in achieving the desired state transfer compared to previous approaches. These results are demonstrated via numerical solutions for an example problem on a single qubit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا