ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective-range approximations for resonant scattering of cold atoms

100   0   0.0 ( 0 )
 نشر من قبل Jeremy M. Hutson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studies of cold atom collisions and few-body interactions often require the energy dependence of the scattering phase shift, which is usually expressed in terms of an effective-range expansion. We use accurate coupled-channel calculations on $^{6}$Li, $^{39}$K and $^{133}$Cs to explore the behavior of the effective range in the vicinity of both broad and narrow Feshbach resonances. We show that commonly used expressions for the effective range break down dramatically for narrow resonances and near the zero-crossings of broad resonances. We present an alternative parametrization of the effective range that is accurate through both the pole and the zero-crossing for both broad and narrow resonances. However, the effective range expansion can still fail at quite low collision energies, particularly around narrow resonances. We demonstrate that an analytical form of an energy and magnetic field-dependent phase shift, based on multichannel quantum defect theory, gives accurate results for the energy-dependent scattering length.

قيم البحث

اقرأ أيضاً

We present a general scheme for synthesizing a spatially periodic magnetic field, or a magnetic lattice (ML), for ultracold atoms using pulsed gradient magnetic fields. Both the period and the depth of the artificial ML can be tuned, immune to atomic spontaneous emission often encountered in optical lattices. The effective Hamiltonian for our 2-dimensional ML has not been discussed previously in condensed matter physics. Its band structures show interesting features which can support topologically nontrivial phases. The technical requirements for implementing our protocol are readily available in todays cold atom experiments. Realization of our proposal will significantly expand the repertoire for quantum simulation with ultracold atoms.
122 - D. Hudson Smith 2016
In systems of ultracold atoms, pairwise interactions are resonantly enhanced by the application of an oscillating magnetic field that is parallel to the spin-quantization axis of the atoms. The resonance occurs when the frequency of the applied field is precisely tuned near the transition frequency between the scattering atoms and a diatomic molecule. The resulting cross section can be made more than two orders of magnitude larger than the cross section in the absence of the oscillating field. The low momentum resonance properties have a universal description that is independent of the atomic species. To arrive at these conclusions, we first develop a formal extension of Floquet theory to describe scattering of atoms with time-periodic, short-range interaction potentials. We then calculate the atomic scattering properties by modeling the atomic interactions with a square well potential with oscillating depth and then explicitly solving the time-dependent Schrodinger equation. We then apply the Floquet formalism to the case of atoms scattering with a contact interaction described by a time-periodic scattering length, obtaining analytic results that agree with those obtained by solving the time-dependent Schrodinger equation.
We present a compact source of cold sodium atoms suitable for the production of quantum degenerate gases and versatile for a multi-species experiment. The magnetic field produced by permanent magnets allows to simultaneously realize a Zeeman slower a nd a two-dimensional MOT within an order of magnitude smaller length than standard sodium sources. We achieve an atomic flux exceeding 4x10^9 atoms/s loaded in a MOT, with a most probable longitudinal velocity of 20 m/s, and a brightness larger than 2.5x10^(12) atoms/s/sr. This atomic source allowed us to produce a pure BEC with more than 10^7 atoms and a background pressure limited lifetime of 5 minutes.
We report on the production of a novel cold mixture of fermionic $^{53}$Cr and $^{6}$Li atoms delivered by two Zeeman-slowed atomic beams and collected within a magneto-optical trap (MOT). For lithium, we obtain clouds of up to $4 ,10^8$ atoms at tem peratures of about $500,mu$K. A gray optical molasses stage allows us to decrease the gas temperature down to $45(5),mu$K. For chromium, we obtain MOTs comprising up to $1.5, 10^6$ atoms. The availability of magnetically trappable metastable $D$-states, from which $P$-state atoms can radiatively decay onto, enables to accumulate into the MOT quadrupole samples of up to $10^7$ $^{53}$Cr atoms. After repumping $D$-state atoms back into the cooling cycle, a final cooling stage decreases the chromium temperature down to $145(5),mu$K. While the presence of a lithium MOT decreases the lifetime of magnetically trapped $^{53}$Cr atoms, we obtain, within a 5 seconds duty cycle, samples of about $4, 10^6$ chromium and $1.5,10^8$ lithium atoms. Our work provides a crucial step towards the production of degenerate Cr-Li Fermi mixtures.
We formulate a Bardeen-Cooper-Schriffer (BCS) theory of quasiparticles in a degenerate Fermi gas strongly coupled to photons in a optical cavity. The elementary photonic excitations of the system are cavity polaritons, which consist of a cavity photo n and an excitation of an atom within the Fermi sea. The excitation of the atom out of the Fermi sea leaves behind a hole, which together results in a loosely bound Cooper pair, allowing for the system to be written by a BCS wavefunction. As the density of the excitations is increased, the excited atom and hole become more strongly bound, crossing over into the molecular regime. This thus realizes an alternative BCS to BEC crossover scenario, where the participating species are quasiparticle excitations in a Fermi sea consisting of excited atoms and holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا