ﻻ يوجد ملخص باللغة العربية
Erd{o}s and Niven proved in 1946 that for any positive integers $m$ and $d$, there are at most finitely many integers $n$ for which at least one of the elementary symmetric functions of $1/m, 1/(m+d), ..., 1/(m+(n-1)d)$ are integers. Recently, Wang and Hong refined this result by showing that if $ngeq 4$, then none of the elementary symmetric functions of $1/m, 1/(m+d), ..., 1/(m+(n-1)d)$ is an integer for any positive integers $m$ and $d$. Let $f$ be a polynomial of degree at least $2$ and of nonnegative integer coefficients. In this paper, we show that none of the elementary symmetric functions of $1/f(1), 1/f(2), ..., 1/f(n)$ is an integer except for $f(x)=x^{m}$ with $mgeq2$ being an integer and $n=1$.
Let $a$ and $b$ be positive integers. In 1946, ErdH{o}s and Niven proved that there are only finitely many positive integers $n$ for which one or more of the elementary symmetric functions of $1/b, 1/(a+b),..., 1/(an-a+b)$ are integers. In this paper
Wooley ({em J. Number Theory}, 1996) gave an elementary proof of a Bezout like theorem allowing one to count the number of isolated integer roots of a system of polynomial equations modulo some prime power. In this article, we adapt the proof to a
Let $n$ be a positive integer and $f(x)$ be a polynomial with nonnegative integer coefficients. We prove that ${rm lcm}_{lceil n/2rceil le ile n} {f(i)}ge 2^n$ except that $f(x)=x$ and $n=1, 2, 3, 4, 6$ and that $f(x)=x^s$ with $sge 2$ being an integ
Quadratic matrix equations occur in a variety of applications. In this paper we introduce new permutationally invariant functions of two solvents of the n quadratic matrix equation X^2- L1X - L0 = 0, playing the role of the two elementary symmetric f
We prove an asymptotic formula for the twisted first moment of Maass form symmetric square L-functions on the critical line and at the critical point. The error term is estimated uniformly with respect to all parameters.