ترغب بنشر مسار تعليمي؟ اضغط هنا

PR2: A Language Independent Unsupervised Tool for Personality Recognition from Text

101   0   0.0 ( 0 )
 نشر من قبل Fabio Celli PhD
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present PR2, a personality recognition system available online, that performs instance-based classification of Big5 personality types from unstructured text, using language-independent features. It has been tested on English and Italian, achieving performances up to f=.68.



قيم البحث

اقرأ أيضاً

In this paper, we describe ALTER, an auxiliary text rewriting tool that facilitates the rewriting process for natural language generation tasks, such as paraphrasing, text simplification, fairness-aware text rewriting, and text style transfer. Our to ol is characterized by two features, i) recording of word-level revision histories and ii) flexible auxiliary edit support and feedback to annotators. The text rewriting assist and traceable rewriting history are potentially beneficial to the future research of natural language generation.
In this work, we present a Web-based annotation tool `Relation Triplets Extractor footnote{https://abera87.github.io/annotate/} (RTE) for annotating relation triplets from the text. Relation extraction is an important task for extracting structured i nformation about real-world entities from the unstructured text available on the Web. In relation extraction, we focus on binary relation that refers to relations between two entities. Recently, many supervised models are proposed to solve this task, but they mostly use noisy training data obtained using the distant supervision method. In many cases, evaluation of the models is also done based on a noisy test dataset. The lack of annotated clean dataset is a key challenge in this area of research. In this work, we built a web-based tool where researchers can annotate datasets for relation extraction on their own very easily. We use a server-less architecture for this tool, and the entire annotation operation is processed using client-side code. Thus it does not suffer from any network latency, and the privacy of the users data is also maintained. We hope that this tool will be beneficial for the researchers to advance the field of relation extraction.
Binary classifiers are often employed as discriminators in GAN-based unsupervised style transfer systems to ensure that transferred sentences are similar to sentences in the target domain. One difficulty with this approach is that the error signal pr ovided by the discriminator can be unstable and is sometimes insufficient to train the generator to produce fluent language. In this paper, we propose a new technique that uses a target domain language model as the discriminator, providing richer and more stable token-level feedback during the learning process. We train the generator to minimize the negative log likelihood (NLL) of generated sentences, evaluated by the language model. By using a continuous approximation of discrete sampling under the generator, our model can be trained using back-propagation in an end- to-end fashion. Moreover, our empirical results show that when using a language model as a structured discriminator, it is possible to forgo adversarial steps during training, making the process more stable. We compare our model with previous work using convolutional neural networks (CNNs) as discriminators and show that our approach leads to improved performance on three tasks: word substitution decipherment, sentiment modification, and related language translation.
With the increasing growth of social media, people have started relying heavily on the information shared therein to form opinions and make decisions. While such a reliance is motivation for a variety of parties to promote information, it also makes people vulnerable to exploitation by slander, misinformation, terroristic and predatorial advances. In this work, we aim to understand and detect such attempts at persuasion. Existing works on detecting persuasion in text make use of lexical features for detecting persuasive tactics, without taking advantage of the possible structures inherent in the tactics used. We formulate the task as a multi-class classification problem and propose an unsupervised, domain-independent machine learning framework for detecting the type of persuasion used in text, which exploits the inherent sentence structure present in the different persuasion tactics. Our work shows promising results as compared to existing work.
Scientific workflow management systems offer features for composing complex computational pipelines from modular building blocks, for executing the resulting automated workflows, and for recording the provenance of data products resulting from workfl ow runs. Despite the advantages such features provide, many automated workflows continue to be implemented and executed outside of scientific workflow systems due to the convenience and familiarity of scripting languages (such as Perl, Python, R, and MATLAB), and to the high productivity many scientists experience when using these languages. YesWorkflow is a set of software tools that aim to provide such users of scripting languages with many of the benefits of scientific workflow systems. YesWorkflow requires neither the use of a workflow engine nor the overhead of adapting code to run effectively in such a system. Instead, YesWorkflow enables scientists to annotate existing scripts with special comments that reveal the computational modules and dataflows otherwise implicit in these scripts. YesWorkflow tools extract and analyze these comments, represent the scripts in terms of entities based on the typical scientific workflow model, and provide graphical renderings of this workflow-like view of the scripts. Futu
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا