ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical phase coherent timing of the Crab nebula pulsar with Iqueye at the ESO New Technology Telescope

66   0   0.0 ( 0 )
 نشر من قبل Luca Zampieri
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Crab nebula pulsar was observed in 2009 January and December with a novel very fast optical photon counter, Iqueye, mounted at the ESO 3.5 m New Technology Telescope. Thanks to the exquisite quality of the Iqueye data, we computed accurate phase coherent timing solutions for the two observing runs and over the entire year 2009. Our statistical uncertainty on the determination of the phase of the main pulse and the rotational period of the pulsar for short (a few days) time intervals are $approx 1 , mu$s and ~0.5 ps, respectively. Comparison with the Jodrell Bank radio ephemerides shows that the optical pulse leads the radio one by ~240 $mu$s in January and ~160 $mu$s in December, in agreement with a number of other measurements performed after 1996. A third-order polynomial fit adequately describes the spin-down for the 2009 January plus December optical observations. The phase noise is consistent with being Gaussian distributed with a dispersion $sigma$ of $approx 15 , mu$s in most observations, in agreement with theoretical expectations for photon noise-induced phase variability.

قيم البحث

اقرأ أيضاً

We observed the Crab pulsar in October 2008 at the Copernico Telescope in Asiago - Cima Ekar with the optical photon counter Aqueye (the Asiago Quantum Eye) which has the best temporal resolution and accuracy ever achieved in the optical domain (hund reds of picoseconds). Our goal was to perform a detailed analysis of the optical period and phase drift of the main peak of the Crab pulsar and compare it with the Jodrell Bank ephemerides. We determined the position of the main peak using the steepest zero of the cross-correlation function between the pulsar signal and an accurate optical template. The pulsar rotational period and period derivative have been measured with great accuracy using observations covering only a 2 day time interval. The error on the period is 1.7 ps, limited only by the statistical uncertainty. Both the rotational frequency and its first derivative are in agreement with those from the Jodrell Bank radio ephemerides archive. We also found evidence of the optical peak leading the radio one by ~230 microseconds. The distribution of phase-residuals of the whole dataset is slightly wider than that of a synthetic signal generated as a sequence of pulses distributed in time with the probability proportional to the pulse shape, such as the average count rate and background level are those of the Crab pulsar observed with Aqueye. The counting statistics and quality of the data allowed us to determine the pulsar period and period derivative with great accuracy in 2 days only. The time of arrival of the optical peak of the Crab pulsar leads the radio one in agreement with what recently reported in the literature. The distribution of the phase residuals can be approximated with a Gaussian and is consistent with being completely caused by photon noise (for the best data sets).
We have observed the Crab Pulsar in the optical with S-Cam, an instrument based on Superconducting Tunneling Junctions (STJs) with $mu$s time resolution. Our aim was to study the delay between the radio and optical pulse. The Crab Pulsar was observed three times over a time span of almost 7 years, on two different locations, using three differe
The Crab nebula is one of the most studied cosmic particle accelerators, shining brightly across the entire electromagnetic spectrum up to very high-energy gamma rays. It is known from radio to gamma-ray observations that the nebula is powered by a p ulsar, which converts most of its rotational energy losses into a highly relativistic outflow. This outflow powers a pulsar wind nebula (PWN), a region of up to 10~light-years across, filled with relativistic electrons and positrons. These particles emit synchrotron photons in the ambient magnetic field and produce very high-energy gamma rays by Compton up-scattering of ambient low-energy photons. While the synchrotron morphology of the nebula is well established, it was up to now not known in which region the very high-energy gamma rays are emitted. Here we report that the Crab nebula has an angular extension at gamma-ray energies of 52 arcseconds (assuming a Gaussian source width), significantly larger than at X-ray energies. This result closes a gap in the multi-wavelength coverage of the nebula, revealing the emission region of the highest energy gamma rays. These gamma rays are a new probe of a previously inaccessible electron and positron energy range. We find that simulations of the electromagnetic emission reproduce our new measurement, providing a non-trivial test of our understanding of particle acceleration in the Crab nebula.
Since 2009, several rapid and bright flares have been observed at high energies (>100 MeV) from the direction of the Crab Nebula. Several hypotheses have been put forward to explain this phenomenon, but the origin is still unclear. The detection of c ounterparts at higher energies with the next generation of Cherenkov telescopes will be determinant to constrain the underlying emission mechanisms. We aim at studying the capability of the Cherenkov Telescope Array (CTA) to explore the physics behind the flares, by performing simulations of the Crab Nebula spectral energy distribution, both in flaring and steady state, for different parameters related to the physical conditions in the nebula. In particular, we explore the data recorded by Fermi during two particular flares that occurred in 2011 and 2013. The expected GeV and TeV gamma-ray emission is derived using different radiation models. The resulting emission is convoluted with the CTA response and tested for detection, obtaining an exclusion region for the space of parameters that rule the different flare emission models. Our simulations show different scenarios that may be favourable for achieving the detection of the flares in Crab with CTA, in different regimes of energy. In particular, we find that observations with low sub-100 GeV energy threshold telescopes could provide the most model-constraining results.
We summarize here the results, most of which are preliminary, of a number of recent observations of the Crab nebula system with the Chandra X-Ray Observatory. We discuss four different topics: (1) The motion on long (> 1yr) time scales of the souther n jet. (2) The discovery that pulsar is not at the center of the projected ring on the sky and that the ring may well lie on the axis of symmetry but appears to be displaced at a latitude of about 5 degrees. (Note that this deprojection is by no means unique.) (3) The results and puzzling implications of the Chandra phase-resolved spectroscopy of the pulsar when compared to observations of pulse-phase variations of similar and dissimilar measures in other regions of the spectrum. (4) The search for the X-ray location of the site of the recently-discovered gamma-ray flaring. We also comment briefly on our plan to use the Chandra data we obtained for the previous project to study the nature of the low-energy flux variations recently detected at hard X-ray energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا