ﻻ يوجد ملخص باللغة العربية
We studied SNS- and S-N-S-N-...-S contacts (where S - superconductor, N - normal metal) formed by break-junction technique in polycrystalline Sm$_{1-x}$Th$_x$OFeAs superconductor samples with critical temperatures $T_C = (34 div 45)$ K. In such contacts (intrinsic) multiple Andreev reflections effects were observed. Using spectroscopies based on these effects, we detected two independent bulk order parameters and determined their magnitudes. Theoretical analysis of the large and the small gap temperature dependences revealed superconducting properties of Sm$_{1-x}$Th$_x$OFeAs to be driven by intraband coupling, and $sqrt{V_{11}V_{22}}/V_{12} approx 14$ (where $V_{ij}$ - electron-boson interaction matrix elements), whereas the ratio between density of states for the bands with the small and the large gap, $N_2/N_1$, correspondingly, was roughly of an order. We estimated solo BCS-ratio values in a hypothetic case of zero interband coupling ($V_{i e j} = 0$) for each condensate as $2Delta_{L,S}/k_BT_C^{L,S} le 4.5$. The values are constant within the range of critical temperatures studied, and correspond to a case of strong intraband electron-phonon coupling.
Using intrinsic multiple Andreev reflections effect (IMARE) spectroscopy, we studied SnS contacts in the layered oxypnictide superconductors Sm$_{1-x}$Th$_x$OFeAs with various thorium doping and critical temperatures $T_C = 21-54$ K. We observe a sca
We studied a reproducible fine structure observed in dynamic conductance spectra of Andreev arrays in Sm$_{1-x}$Th$_x$OFeAs superconductors with various thorium concentrations ($x = 0.08 - 0.3$) and critical temperatures $T_c = 26-50$,K. This structu
Iron is an important sheath material for fabrication of MgB2 wires. However, the effect of Fe doping on the superconducting properties of MgB2 remains controversial. In this work, we present results of nano-scale Fe particle doping in to MgB2. The Fe
Stimulated by the recent experiment [F. Ando et al., Nature 584, 373 (2020)], we propose an intrinsic mechanism to cause the superconducting diode effect (SDE). SDE refers to the nonreciprocity of the critical current for the metal-superconductor tra
Our Rutherford backscattering spectrometry (RBS) study has found that concentrations up to 7 atomic percent of Rb and Cs can be introduced to a depth of ~700 A in MgB2 thin films by annealing in quartz ampoules containing elemental alkali metals at <