ترغب بنشر مسار تعليمي؟ اضغط هنا

Application of TauSpinner for studies on tau-lepton polarization and spin correlations in Z, W and H decays at LHC

110   0   0.0 ( 0 )
 نشر من قبل Zbigniew Was
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The tau-lepton plays an important role in the physics program at LHC. Its spin can be used for separation of signal from background or in measuring properties of New Particles decaying to tau leptons. The TauSpinner package represents a tool to modify tau spin effects in any sample containing tau leptons. Generated events, featuring taus produced from intermediate state W, Z, H bosons can be used as an input. The information on the polarization and spin correlations is reconstructed from the kinematics of the tau lepton(s) (nutau in case of W-mediated processes) and tau decay products. By weights, attributed on the event-by-event basis, it enables numerical evaluation and/or modification of the spin effects. We review distributions to monitor spin effects in leptonic and hadronic tau decays with up to three pions, to provide benchmarks for validation of spin content of the event sample and to visualize the tau lepton spin polarization and correlation effects. The demonstration examples for use of TauSpinner libraries, are documented. New validation methods of such an approach are provided. Other topics, like TauSpinner systematic errors or sensitivity of experimental distributions to spin, are addressed in part only. This approach is of interest for implementation of spin effects in embedded tau lepton samples, where Z to mu mu events from data of muons are replaced by simulated tau leptons. Embedding is used at LHC for estimating Z to tau tau background to H to tau tau signatures.



قيم البحث

اقرأ أيضاً

In this paper, we discuss application of the TauSpinner package as a simulation tool for measuring the CP state of the newly discovered Higgs boson using the transverse spin correlations in the H to tau tau decay channel. We discuss application for i ts main background Z/gamma* to tau tau as well. The TauSpinner package allows one to add, with the help of weights, transverse spin correlations corresponding to any mixture of scalar/pseudoscalar state, on already existing events using information from the kinematics of outgoing tau leptons and their decay products only. This procedure can be used when polarimetric vectors of the taus decays and density matrix for tau-pair production are not stored with the event sample. We concentrate on the well-defined effects for the Higgs (or Higgs-like scalar) decays, which are physically separated from the production processes. TauSpinner also allows to reintroduce (or remove) spin correlations to events from Drell-Yan Z/gamma* to tau tau process, the main background for the Higgs parity observables, again with the help of weights only. From the literature, we recall well-established observables, developed for measuring the CP of the Higgs, and use them as benchmarks for illustrating applications of the TauSpinner package. We also include a description of the code and prepared testing examples.
The TauSpinner algorithm allows to modify the physics of the Monte Carlo generated samples due to the changed assumptions of event production dynamics, without re-generating events. To each event it attributes weights: the spin effects of tau-lepton production or decay, or the production mechanism are modified. There is no need to repeat the detector response simulation. We document the extension to 2 to 4 processes in which the matrix elements for the parton-parton scattering amplitudes into a tau-lepton pair and two outgoing partons are used. Tree-level matrix elements for the Standard Model processes, including the Higgs boson production are used. Automatically generated codes by MadGraph5 have been adapted. Tests of the matrix elements, reweighting algorithm and numerical results are presented. For averaged tau lepton polarisation, we perform comparison of 2 to 2 and 2 to 4 matrix elements used to calculate the spin weight in pp to tau tau j j events. We show, that for events with tau-lepton pair close to the Z-boson peak, the tau-lepton polarisation calculated using 2 to 4 matrix elements is very close to the one calculated using 2 to 2 Born process only. For the m_(tautau) masses above the Z-boson peak, the effect from including 2 to 4 matrix elements is also marginal, however when restricting into subprocesses qq,q bar q to tau tau j j only, it can lead to a 10% difference on the predicted tau-lepton polarisation. Choice of electroweak scheme can have significant impact. The modification of the electroweak or strong interaction can be performed with the re-weighting technique. TauSpinner v.2.0.0, allows to introduce non-standard couplings for the Higgs boson and study their effects in the vector-boson-fusion. The discussion is relegated to forthcoming publications.
In this paper we show that the excess of the tau tau events with respect to the Standard Model background predictions, observed by the ATLAS and CMS collaborations and interpreted as the evidence of the Higgs-boson decay into a pair of tau-leptons, m ay be accounted for by properly taking into account QED radiative corrections in the modelling of the Z/gamma* -> tau tau background.
123 - Tao Han , Ian Lewis , Richard Ruiz 2012
We study the observability for a heavy Majorana neutrino N along with a new charged gauge boson W at the LHC. We emphasize the complementarity of these two particles in their production and decay to unambiguously determine their properties. We show t hat the Majorana nature of N can be verified by the lepton-number violating like-sign dilepton process, and by polar and azimuthal angular distributions. The chirality of the W coupling to leptons and to quarks can be determined by a polar angle distribution in the reconstructed frame and an azimuthal angle distribution.
We consider the possibility of studying new physics that singles out the tau-lepton at the LHC. We concentrate on the tau-lepton charge asymmetry in tau+tau- pair production as a tool to probe this physics beyond the Standard Model. We consider two g eneric scenarios for the new physics. We first study a non-universal Z boson as an example of a new resonance that can single out tau-leptons. We then consider vector lepto-quarks coupling of the first generation quarks with the third generation leptons as an example of non-resonant new physics. We find that in both cases the charge asymmetry can be sufficiently sensitive to the new physics to provide useful constraints at the LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا