ﻻ يوجد ملخص باللغة العربية
We study the time evolution of the local magnetization in the critical Ising chain in a transverse field after a sudden change of the parameters at a defect. The relaxation of the defect magnetization is algebraic and the corresponding exponent, which is a continuous function of the defect parameters, is calculated exactly. In finite chains the relaxation is oscillating in time and its form is conjectured on the basis of precise numerical calculations.
We numerically simulate the time evolution of the Ising field theory after quenches starting from the $E_8$ integrable model using the Truncated Conformal Space Approach. The results are compared with two different analytic predictions based on form
We study a one-dimensional chain of corner-sharing triangles with antiferromagnetic Ising interactions along its bonds. Classically, this system is highly frustrated with an extensive entropy at T = 0 and exponentially decaying spin correlations. We
The slow dynamics (10^-6 s - 10^4 s) of the magnetization in the paramagnetic phase, predicted by Glauber for 1d Ising ferromagnets, has been observed with ac susceptibility and SQUID magnetometry measurements in a molecular chain comprising alternat
Fluctuation-induced forces occur generically when long-ranged correlations (e.g., in fluids) are confined by external bodies. In classical systems, such correlations require specific conditions, e.g., a medium close to a critical point. On the other
Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there have been an urge of interest in ameliorating this kind of method, mainly with the aim of i