ﻻ يوجد ملخص باللغة العربية
The Potts model is frequently used to describe the behavior of image classes, since it allows to incorporate contextual information linking neighboring pixels in a simple way. Its isotropic version has only one real parameter beta, known as smoothness parameter or inverse temperature, which regulates the classes map homogeneity. The classes are unavailable, and estimating them is central in important image processing procedures as, for instance, image classification. Methods for estimating the classes which stem from a Bayesian approach under the Potts model require to adequately specify a value for beta. The estimation of such parameter can be efficiently made solving the Pseudo Maximum likelihood (PML) equations in two different schemes, using the prior or the posterior model. Having only radiometric data available, the first scheme needs the computation of an initial segmentation, while the second uses both the segmentation and the radiometric data to make the estimation. In this paper, we compare these two PML estimators by computing the mean square error (MSE), bias, and sensitivity to deviations from the hypothesis of the model. We conclude that the use of extra data does not improve the accuracy of the PML, moreover, under gross deviations from the model, this extra information introduces unpredictable distortions and bias.
Understanding centennial scale climate variability requires data sets that are accurate, long, continuous and of broad spatial coverage. Since instrumental measurements are generally only available after 1850, temperature fields must be reconstructed
The equations of a physical constitutive model for material stress within tantalum grains were solved numerically using a tetrahedrally meshed volume. The resulting output included a scalar vonMises stress for each of the more than 94,000 tetrahedra
Let $X_i, i in V$ form a Markov random field (MRF) represented by an undirected graph $G = (V,E)$, and $V$ be a subset of $V$. We determine the smallest graph that can always represent the subfield $X_i, i in V$ as an MRF. Based on this result, we
We introduce uncertainty regions to perform inference on partial correlations when data are missing not at random. These uncertainty regions are shown to have a desired asymptotic coverage. Their finite sample performance is illustrated via simulations and real data example.
In a mouse intercross with more than 500 animals and genome-wide gene expression data on six tissues, we identified a high proportion (18%) of sample mix-ups in the genotype data. Local expression quantitative trait loci (eQTL; genetic loci influenci