ترغب بنشر مسار تعليمي؟ اضغط هنا

Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics

310   0   0.0 ( 0 )
 نشر من قبل Vinod Sangwan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Graphene field-effect transistors are integrated with solution-processed multilayer hybrid organic-inorganic self-assembled nanodielectrics (SANDs). The resulting devices exhibit low-operating voltage (2 V), negligible hysteresis, current saturation with intrinsic gain > 1.0 in vacuum (pressure < 2 x 10-5 Torr), and overall improved performance compared to control devices on conventional SiO2 gate dielectrics. Statistical analysis of the field-effect mobility and residual carrier concentration demonstrate high spatial uniformity of the dielectric interfacial properties and graphene transistor characteristics over full 3 inch wafers. This work thus establishes SANDs as an effective platform for large-area, high-performance graphene electronics.



قيم البحث

اقرأ أيضاً

Preparing graphene and its derivatives on functional substrates may open enormous opportunities for exploring the intrinsic electronic properties and new functionalities of graphene. However, efforts in replacing SiO$_{2}$ have been greatly hampered by a very low sample yield of the exfoliation and related transferring methods. Here, we report a new route in exploring new graphene physics and functionalities by transferring large-scale chemical vapor deposition single-layer and bilayer graphene to functional substrates. Using ferroelectric Pb(Zr$_{0.3}$Ti$_{0.7}$)O$_{3}$ (PZT), we demonstrate ultra-low voltage operation of graphene field effect transistors within $pm1$ V with maximum doping exceeding $10^{13},mathrm{cm^{-2}}$ and on-off ratios larger than 10 times. After polarizing PZT, switching of graphene field effect transistors are characterized by pronounced resistance hysteresis, suitable for ultra-fast non-volatile electronics.
The development of graphene electronics requires the integration of graphene devices with Si-CMOS technology. Most strategies involve the transfer of graphene sheets onto silicon, with the inherent difficulties of clean transfer and subsequent graphe ne nano-patterning that degrades considerably the electronic mobility of nanopatterned graphene. Epitaxial graphene (EG) by contrast is grown on an essentially perfect crystalline (semi-insulating) surface, and graphene nanostructures with exceptional properties have been realized by a selective growth process on tailored SiC surface that requires no graphene patterning. However, the temperatures required in this structured growth process are too high for silicon technology. Here we demonstrate a new graphene to Si integration strategy, with a bonded and interconnected compact double-wafer structure. Using silicon-on-insulator technology (SOI) a thin monocrystalline silicon layer ready for CMOS processing is applied on top of epitaxial graphene on SiC. The parallel Si and graphene platforms are interconnected by metal vias. This method inspired by the industrial development of 3d hyper-integration stacking thin-film electronic devices preserves the advantages of epitaxial graphene and enables the full spectrum of CMOS processing.
High-performance graphene field-effect transistors have been fabricated on epitaxial graphene synthesized on a two-inch SiC wafer, achieving a cutoff frequency of 100 GHz for a gate length of 240 nm. The high-frequency performance of these epitaxial graphene transistors not only shows the highest speed for any graphene devices up to date, but it also exceeds that of Si MOSFETs at the same gate length. The result confirms the high potential of graphene for advanced electronics applications, marking an important milestone for carbon electronics.
Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays becaus e of their incompatibility with typical lithography processes. We report the first patterned growth of regular arrays of perovskite microplate crystals for functional electronics and optoelectronics. We show that large arrays of lead iodide microplates can be grown from an aqueous solution through a seeded growth process and can be further intercalated with methylammonium iodide to produce perovskite crystals. Structural and optical characterizations demonstrate that the resulting materials display excellent crystalline quality and optical properties. We further show that perovskite crystals can be selectively grown on prepatterned electrode arrays to create independently addressable photodetector arrays and functional field effect transistors. The ability to grow perovskite microplates and to precisely place them at specific locations offers a new material platform for the fundamental investigation of the electronic and optical properties of perovskite materials and opens a pathway for integrated electronic and optoelectronic systems.
We report results of experimental investigation of the low-frequency noise in the top-gate graphene transistors. The back-gate graphene devices were modified via addition of the top gate separated by 20 nm of HfO2 from the single-layer graphene chann els. The measurements revealed low flicker noise levels with the normalized noise spectral density close to 1/f (f is the frequency) and Hooge parameter below 2 x 10^-3. The analysis of the noise spectral density dependence on the top and bottom gate biases helped us to elucidate the noise sources in these devices and develop a strategy for the electronic noise reduction. The obtained results are important for all proposed graphene applications in electronics and sensors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا