ﻻ يوجد ملخص باللغة العربية
Graphene field-effect transistors are integrated with solution-processed multilayer hybrid organic-inorganic self-assembled nanodielectrics (SANDs). The resulting devices exhibit low-operating voltage (2 V), negligible hysteresis, current saturation with intrinsic gain > 1.0 in vacuum (pressure < 2 x 10-5 Torr), and overall improved performance compared to control devices on conventional SiO2 gate dielectrics. Statistical analysis of the field-effect mobility and residual carrier concentration demonstrate high spatial uniformity of the dielectric interfacial properties and graphene transistor characteristics over full 3 inch wafers. This work thus establishes SANDs as an effective platform for large-area, high-performance graphene electronics.
Preparing graphene and its derivatives on functional substrates may open enormous opportunities for exploring the intrinsic electronic properties and new functionalities of graphene. However, efforts in replacing SiO$_{2}$ have been greatly hampered
The development of graphene electronics requires the integration of graphene devices with Si-CMOS technology. Most strategies involve the transfer of graphene sheets onto silicon, with the inherent difficulties of clean transfer and subsequent graphe
High-performance graphene field-effect transistors have been fabricated on epitaxial graphene synthesized on a two-inch SiC wafer, achieving a cutoff frequency of 100 GHz for a gate length of 240 nm. The high-frequency performance of these epitaxial
Methylammonium lead iodide perovskite has attracted intensive interest for its diverse optoelectronic applications. However, most studies to date have been limited to bulk thin films that are difficult to implement for integrated device arrays becaus
We report results of experimental investigation of the low-frequency noise in the top-gate graphene transistors. The back-gate graphene devices were modified via addition of the top gate separated by 20 nm of HfO2 from the single-layer graphene chann