ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopy Apparatus for the Measurement of The Hyperfine Structure of Antihydrogen

332   0   0.0 ( 0 )
 نشر من قبل Chlo\\'e Malbrunot
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ASACUSA CUSP collaboration at the Antiproton Decelerator (AD) of CERN is planning to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. We describe here the latest developments on the spectroscopy apparatus developed to be coupled to the antihydrogen production setup (CUSP).

قيم البحث

اقرأ أيضاً

The MuSEUM collaboration is planning measurements of the ground-state hyperfine structure (HFS) of muonium at the Japan Proton Accelerator Research Complex (J-PARC), Materials and Life Science Experimental Facility. The high-intensity beam that will soon be available at H-line allows for more precise measurements by one order of magnitude. We plan to conduct two staged measurements. First, we will measure the Mu-HFS in a near-zero magnetic field, and thereafter we will measure it in a strong magnetic field. We have developed two microwave cavities for this purpose. Furthermore, we evaluated systematic uncertainties from such a fluctuation of microwave fields and confirm the requirement of the microwave system, we use a microwave field distribution calculated from the finite element method.
Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison to hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSAs antihydrogen experiment. The measured value of $ u_mathrm{HF}$=$1~420~405~748.4(3.4)(1.6)~textrm{Hz}$ with a relative precision of $Delta$$ u_mathrm{HF}$/$ u_mathrm{HF}$=$2.7times10^{-9}$ constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the ppb level. Together with the recently presented observation of antihydrogen atoms $2.7~textrm{m}$ downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.
We report the successful commissioning and testing of a dedicated field-ioniser chamber for measuring principal quantum number distributions in antihydrogen as part of the ASACUSA hyperfine spectroscopy apparatus. The new chamber is combined with a b eam normalisation detector that consists of plastic scintillators and a retractable passivated implanted planar silicon (PIPS) detector.
The design and operation of apparatus for measurements of in-beam hyperfine interactions and nuclear excited-state $g$ factors is described. This apparatus enables a magnetic field of about 0.1 tesla to be applied to the target and the target tempera ture to be set between $sim 4$ K and room temperature. Design concepts are developed mainly in terms of transient-field $g$-factor measurements following Coulomb excitation by the implantation perturbed angular correlation (IMPAC) technique. The formalism for perturbed angular correlations is outlined and a figure of merit for optimizing these measurements is derived to inform design. Particle detection is based on the use of silicon photodiodes of rectangular shape. The particle-$gamma$ angular correlation formalism for this case is described. The experimental program to date includes temperature-dependent studies of hyperfine fields, transient-field $g$-factor measurements, and time-dependent perturbed angular distribution (TDPAD) studies.
The Jefferson Lab Q_weak experiment determined the weak charge of the proton by measuring the parity-violating elastic scattering asymmetry of longitudinally polarized electrons from an unpolarized liquid hydrogen target at small momentum transfer. A custom apparatus was designed for this experiment to meet the technical challenges presented by the smallest and most precise ${vec{e}}$p asymmetry ever measured. Technical milestones were achieved at Jefferson Lab in target power, beam current, beam helicity reversal rate, polarimetry, detected rates, and control of helicity-correlated beam properties. The experiment employed 180 microA of 89% longitudinally polarized electrons whose helicity was reversed 960 times per second. The electrons were accelerated to 1.16 GeV and directed to a beamline with extensive instrumentation to measure helicity-correlated beam properties that can induce false asymmetries. Moller and Compton polarimetry were used to measure the electron beam polarization to better than 1%. The electron beam was incident on a 34.4 cm liquid hydrogen target. After passing through a triple collimator system, scattered electrons between 5.8 degrees and 11.6 degrees were bent in the toroidal magnetic field of a resistive copper-coil magnet. The electrons inside this acceptance were focused onto eight fused silica Cerenkov detectors arrayed symmetrically around the beam axis. A total scattered electron rate of about 7 GHz was incident on the detector array. The detectors were read out in integrating mode by custom-built low-noise pre-amplifiers and 18-bit sampling ADC modules. The momentum transfer Q^2 = 0.025 GeV^2 was determined using dedicated low-current (~100 pA) measurements with a set of drift chambers before (and a set of drift chambers and trigger scintillation counters after) the toroidal magnet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا