ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple Ionization of Neon under soft x-rays: Theory vs Experiment

121   0   0.0 ( 0 )
 نشر من قبل Dr. Georgios M. Nikolopoulos
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a rather elaborate theoretical model describing the dynamics of Neon under radiation of photon energies $sim 93$ eV and pulse duration in the range of 15 fs, within the framework of Lowest non-vanishing Order of Perturbation Theory (LOPT), cast in terms of rate equations. Our model includes sequential as well as direct multiple ionization channels from the 2s and 2p atomic shells, including aspects of fine structure, whereas the stochastic nature of SASE-FEL light pulses is also taken into account. Our predictions for the ionization yields of the different ionic species are in excellent agreement with the related experimental observations at FLASH.



قيم البحث

اقرأ أيضاً

318 - R Guichard , M Richter , J-M Rost 2013
At the free-electron laser FLASH, multiple ionization of neon atoms was quantitatively investigated at 93.0 eV and 90.5 eV photon energy. For ion charge states up to 6+, we compare the respective absolute photoionization yields with results from a mi nimal model and an elaborate description. Both approaches are based on rate equations and take into acccout a Gaussian spatial intensity distribution of the laser beam. From the comparison we conclude, that photoionization up to a charge of 5+ can be described by the minimal model. For higher charges, the experimental ionization yields systematically exceed the elaborate rate based prediction.
We review the main aspects of multiple photoionization processes in atoms exposed to intense, short wavelength radiation. The main focus is the theoretical framework for the description of such processes as well as the conditions under which direct m ultiphoton multiple ionization processes can dominate over the sequential ones. We discuss in detail the mechanisms available in different wavelength ranges from the infrared to the hard X-rays. The effect of field fluctuations, present at this stage in all SASE free-electron-laser (FEL) facilities, as well as the effect of the interaction volume integration, are also discussed.
We demonstrate the capabilities of time-dependent density functional theory (TDDFT) for strong-field, short wavelength (soft X-ray) physics, as compared to a formalism based on rate equations. We find that TDDFT provides a very good description of th e total and individual ionization yields for Ne and Ar atoms exposed to strong laser pulses. We assess the reliability of different adiabatic density functionals and conclude that an accurate description of long-range interactions by the exchange and correlation potential is crucial for obtaining the correct ionization yield over a wide range of intensities ($10^{13}$ -- $5 times 10^{15}$ W/cm$^2$). Our TDDFT calculations disentangle the contribution from each ionization channel based on the Kohn-Sham wavefunctions.
In this work we report the modification of the normal Auger line shape under the action of an intense x-ray radiation. Under strong Rabi-type coupling of the core, the Auger line profile develops into a doublet structure with an energy separation mai nly determined by the relative strength of the Rabi coupling. In addition, we find that the charge resolved ion yields can be controlled by judicious choice of the x-ray frequency.
We study the role of electron-electron correlation in the ground-state of Ne, as well as in photoionization dynamics induced by an attosecond XUV pulse. For a selection of central photon energies around 100 eV, we find that while the mean-field time- dependent Hartree-Fock method provides qualitatively correct results for the total ionization yield, the photoionization cross section, the photoelectron momentum distribution as well as for the time-delay in photoionization, electron-electron correlation is important for a quantitative description of these quantities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا