ﻻ يوجد ملخص باللغة العربية
We study dwarf satellite galaxy quenching using observations from the Geha et al. (2012) NSA/SDSS catalog together with LCDM cosmological simulations to facilitate selection and interpretation. We show that fewer than 30% of dwarfs (M* ~ 10^8.5-10^9.5 Msun) identified as satellites within massive host halos (Mhost ~ 10^12.5-10^14 Msun) are quenched, in spite of the expectation from simulations that half of them should have been accreted more than 6 Gyr ago. We conclude that whatever the action triggering environmental quenching of dwarf satellites, the process must be highly inefficient. We investigate a series of simple, one-parameter quenching models in order to understand what is required to explain the low quenched fraction and conclude that either the quenching timescale is very long (> 9.5 Gyr, a slow starvation scenario) or that the environmental trigger is not well matched to accretion within the virial volume. We discuss these results in light of the fact that most of the low mass dwarf satellites in the Local Group are quenched, a seeming contradiction that could point to a characteristic mass scale for satellite quenching.
We measure the evolution of the quiescent fraction and quenching efficiency of satellites around star-forming and quiescent central galaxies with stellar mass $log(M_{mathrm{cen}}/M_{odot})>10.5$ at $0.3<z<2.5$. We combine imaging from three deep nea
The vast majority of low-mass satellite galaxies around the Milky Way and M31 appear virtually devoid of cool gas and show no signs of recent or ongoing star formation. Cosmological simulations demonstrate that such quenching is expected and is due t
The radial spatial distribution of low-mass satellites around a Milky Way (MW)-like host is an important benchmark for simulations of small-scale structure. The distribution is sensitive to the disruption of subhalos by the central disk and can indic
We study the evolution of satellite galaxies in clusters of the C-EAGLE simulations, a suite of 30 high-resolution cosmological hydrodynamical zoom-in simulations based on the EAGLE code. We find that the majority of galaxies that are quenched at $z=
The vast majority of dwarf satellites orbiting the Milky Way and M31 are quenched, while comparable galaxies in the field are gas-rich and star-forming. Assuming that this dichotomy is driven by environmental quenching, we use the ELVIS suite of N-bo