ﻻ يوجد ملخص باللغة العربية
We report the detection of extremely broad emission toward two molecular clumps in the Galactic central molecular zone. We have mapped the Sagittarius C complex ($-0^circ.61 < l < -0^circ.27$, $-0^circ.29 < b < 0^circ.04$) in the HCN $J$ = 4--3, $mathrm{^{13}CO}$ $J$ = 3--2, and $mathrm{H^{13}CN}$ $J$ = 1--0 lines with the ASTE 10 m and NRO 45 m telescopes, detecting bright emission with $80mbox{--}120$ $mathrm{km,s^{-1}}$ velocity width (in full-width at zero intensity) toward CO$-0.30$$-0.07$ and CO$-0.40$$-0.22$, which are high velocity compact clouds (HVCCs) identified with our previous CO $J$ = 3--2 survey. Our data reveal an interesting internal structure of CO$-0.30$$-0.07$ comprising a pair of high velocity lobes. The spatial-velocity structure of CO$-0.40$$-0.22$ can be also understood as multiple velocity component, or a velocity gradient across the cloud. They are both located on the rims of two molecular shells of about 10 pc in radius. Kinetic energies of CO$-0.30$$-0.07$ and CO$-0.40$$-0.22$ are $left(0.8mbox{--}2right)times10^{49}$ erg and $left(1mbox{--}4right)times10^{49}$ erg, respectively. We propose several interpretations of their broad emission: collision between clouds associated with the shells, bipolar outflow, expansion driven by supernovae (SNe), and rotation around a dark massive object. There scenarios cannot be discriminated because of the insufficient angular resolution of our data, though the absence of visible energy sources associated with the HVCCs seems to favor the cloud--cloud collision scenario. Kinetic energies of the two molecular shells are $1times10^{51}$ erg and $0.7times10^{51}$ erg, which can be furnished by multiple SN or hypernova explosions in $2times10^5$ yr. These shells are candidates of molecular superbubbles created after past active star formation.
We present a proof-of-concept study of a method to estimate the inclination angle of compact high velocity clouds (CHVCs), i.e. the angle between a CHVCs trajectory and the line-of-sight. The inclination angle is derived from the CHVCs morphology and
We present a catalog of high-velocity clouds in the region of the Magellanic Leading Arm. The catalog is based on neutral hydrogen (HI) observations from the Parkes Galactic All-Sky Survey (GASS). Excellent spectral resolution allows clouds with narr
We consider here the class of compact, isolated, high-velocity HI clouds, CHVCs, which are sharply bounded in angular extent down to a limiting column density of 1.5x10^18 cm^-2. We describe our automated search algorithm and its application to the L
Ultra-compact high velocity clouds (UCHVCs) were identified in the ALFALFA HI survey as potential gas-bearing dark matter halos. Here we present higher resolution neutral hydrogen (HI) observations of twelve UCHVCS with the Westerbork Synthesis Radio
Compact high-velocity clouds (CHVCs) are the most distant of the HVCs in the Local Group model and would have HI volume densities of order 0.0003/cm^3. Clouds with these volume densities and the observed neutral hydrogen column densities will be larg