ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperfine Interactions in MnAs studied by Perturbed Angular Correlations of $gamma$-Rays using the probe $^{77}$Br$rightarrow^{77}$Se and first principles calculations for MnAs and other Mn pnictides

37   0   0.0 ( 0 )
 نشر من قبل Jo\\~ao Nuno Gon\\c{c}alves
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The MnAs compound shows a first-order transition at T$_Capprox42$ C, and a second-order transition at T$_tapprox120$ C. The first-order transition, with structural (hexagonal-orthorhombic), magnetic (FM-PM) and electrical conductivity changes, is associated to magnetocaloric, magnetoelastic, and magnetoresistance effects. We report a study in a large temperature range from $-196$ up to $140$ C, using the $gamma-gamma$ perturbed angular correlations method with the radioactive probe $^{77}$Br$rightarrow^{77}$Se, produced at the ISOLDE-CERN facility. The electric field gradients and magnetic hyperfine fields are determined across the first- and second-order phase transitions encompassing the pure and mixed phase regimes in cooling and heating cycles. The temperature irreversibility of the 1st order phase transition is seen locally, at the nanoscopic scale sensitivity of the hyperfine field, by its hysteresis, detailing and complementing information obtained with macroscopic measurements (magnetization and X-ray powder diffraction). To interpret the results, hyperfine parameters were obtained with first-principles spin-polarized density functional calculations using the generalized gradient approximation with the full potential (L)APW+lo method (textsc{Wien2k} code) by considering the Se probe at both Mn and As sites. A clear assignment of the probe location at the As site is made and complemented with the calculated densities of states and local magnetic moments. We model electronic and magnetic properties of the chemically similar MnSb and MnBi compounds, complementing previous calculations.

قيم البحث

اقرأ أيضاً

107 - S.K. Dey , C.C. Dey , S. Saha 2017
Time-differential perturbed angular correlation (TDPAC) measurements have been carried out in stoichiometric ZrNi$_3$ and HfNi$_3$ intermetallic compounds using $^{181}$Ta probe in the temperature range 77-1073 K considering the immense technological applications of Zr-Ni and Hf-Ni intermetallic compounds. In ZrNi$_3$, four components due to the production of Zr$_2$Ni$_7$, Zr$_8$Ni$_{21}$, Zr$_7$Ni$_{10}$ and ZrNi$_3$ have been found at room temperature. The HfNi$_3$ sample produces five electric quadrupole interaction frequencies at room temperature. The phase HfNi$_3$ is strongly produced in stoichiometric sample of HfNi$_3$ where two non-equivalent Hf sites are found to be present. Besides this phase, two other phases due to Hf$_2$Ni$_7$ and Hf$_8$Ni$_{21}$ have been found but, we do not observe any phase due to Hf$_7$Ni$_{10}$. X-ray diffraction, TEM/energy dispersive X-ray spectroscopy (EDX) and TEM-selected area electron diffraction (SAED) measurements were used to further characterize the investigated materials and it was found that these results agree with the TDPAC results. In order to confirm findings from TDPAC measurements, density functional theory (DFT) based calculations of electric field gradients (EFG) and asymmetry parameters at the sites of $^{181}$Ta probe nucleus were performed. Our calculated results are found to be in excellent agreement with the experimental results.
GaAs:Mn nanowires were obtained on GaAs(001) and GaAs(111)B substrates by molecular beam epitaxial growth of (Ga,Mn)As at conditions leading to MnAs phase separation. Their density is proportional to the density of catalyzing MnAs nanoislands, which can be controlled by the Mn flux and/or the substrate temperature. Being rooted in the ferromagnetic semiconductor (Ga,Mn)As, the nanowires combine one-dimensional properties with the magnetic properties of (Ga,Mn)As and provide natural, self assembled structures for nanospintronics.
We present an investigation of the magnetic behavior of epitaxial MnAs films grown on GaAs(100). We address the dependence of the magnetic moment, ferromagnetic transition temperature ($T_c$) and magnetocrystalline anisotropy constants on epitaxial c onditions. From thorough structural and magnetic investigations, our findings indicate a more complex relationship between strain and magnetic properties in MnAs films than a simple stretch/compression of the unit cell axes. While a small increase is seen in the anisotropy constants the enhancement of the magnetic moment at saturation is significant. X-ray magnetic circular dichroism results show a behavior of the spin- and orbital-moment which is consistent with a structural transition at $T_c$. In particular, we find that the ratio of the orbital to spin moment shows a marked increase in the coexistence region of the ferromagnetic $alpha$- and paramagnetic $beta$-phases, a result that is well in accord with the observed increase of the $c/a$-ratio in the same temperature region. The textit{ab initio} density functional calculations reveal that the magnetic properties are more sensitive towards change in in-plane axis as compared to a change of the out-of-plane axis, which is explained by the analysis of band structures. The effects of electron correlation in MnAs using textit{ab initio} dynamical mean field theory are also presented.
The structural, electronic, optical and vibrational properties of the collapsed (10,10) single-walled carbon nanotube bundle under hydrostatic pressure have been studied by the first-principles calculations. Some features are observed in the present study: First, a collapsed structure is found, which is distinct from both of the herringbone and parallel structures obtained previously. Secondly, a pseudo-gap induced by the collapse appears along the symmetry axis textit{$Gamma $X}. Thirdly, the relative orientation between the collapsed tubes has an important effect on their electronic, optical and vibrational properties, which provides an efficient experimental method to distinguish unambiguously three different collapsed structures.
A number of recent experiments indicate that the iron-chalcogenide FeSe provides the long-sought possibility to study bulk superconductivity in the cross-over regime between the weakly coupled Bardeen--Cooper--Schrieffer (BCS) pairing and the strongl y coupled Bose--Einstein condensation (BEC). We report on $^{77}$Se nuclear magnetic resonance experiments of FeSe, focused on the superconducting phase for strong magnetic fields applied along the $c$ axis, where a distinct state with large spin polarization was reported. We determine this high-field state as bulk superconducting with high spatial homogeneity of the low-energy spin fluctuations. Further, we find that the static spin susceptibility becomes unusually small at temperatures approaching the superconducting state, despite the presence of pronounced spin fluctuations. Taken together, our results clearly indicate that FeSe indeed features an unusual field-induced superconducting state of a highly spin-polarized Fermi liquid in the BCS-BEC crossover regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا